
CPSC 1070 Week 3 Notes
Micheal Merritt, Brendan McGuire, Daniela Arroyo

Table of Contents

Streams
Why not use print like all the other languages?
The << and >> Operators
Stream Manipulators

Expressions
Order of Operations
Prefix & Postfix Incrementing and Decrementing

Type Casting & Coercion
Casting with static_cast
C-Style Casts
Overflow/Underflow

Control Statements
If/else
Logical Operators & Short Circuit Evaluation
Switch
While Loops
For Loops
Break & Continue

Scope

C++ Expressions and Interactions

Streams

In C++, Streams represent a continuous flow of data from one place to another. The chief
example of streams you see in C++ is the Standard I/O, represented by std::cout,
std::cerr, and std::cin for standard output, error, and input respectively.

#include <iostream>

int main() {

std::cout << "Hello World" << std::endl;

}

Why not use print like all the other languages?
By modeling the input and output as a stream of data, you’re getting closer access to how the
computer is actually dealing with those streams of data.

Right now, it’s annoying to deal with, but it will prove useful in the future, promise.

The << and >> Operators
These are the stream insertion and stream extraction operators. They allow you to put and pull
data from streams, respectively.

They allow us to add data or remove many types of data from the streams without having to
join it all together into a single representation. To see why this is useful, try to create a single
variable that is the concatenation of a string literal, a double type, and an integer (it’s not easy
or fun!).

You can achieve the same functionality by using the stream operators instead:

cout << months << " months ";

cout << " (" << years << " years)";

cout << " is required to pay off the loan.\n" << endl;

Stream Manipulators
Oftentimes, you want to customize how your data is pushed to the stream. This is achieved
with stream manipulators, found in <iomanip>

Stream manipulators are added to your stream just by inserting them using the stream
insertion operator, and they will then affect anything else downstream.

std::cout << fixed << setprecision(0) << months << " months";

Here are some common stream manipulators:

Manipulator Description

std::fixed Outputs floating-point numbers with a fixed
decimal, instead of in scientific notation.

std::setprecision(n) Sets the decimal precision for floating-point
numbers to n decimal places

std::endl Appends a newline to the stream, and then
clears the buffer. In standard I/O this will
display the contents of the stream.

std::flush Does the same as above, but doesn’t add a
newline.

You can see a complete list of manipulators at
https://www.cplusplus.com/reference/library/manipulators/

https://www.cplusplus.com/reference/library/manipulators/

Expressions

When you combine multiple variables, literals, together, you’re creating an expression. At
runtime, expressions are condensed to form a single final value. This is done in the order of
operations:

Order of Operations
1. Parentheses
2. Unary Operators
3. Multiplication/Division/Modulo
4. Addition & Subtraction

Prefix & Postfix Incrementing and Decrementing

There are many use cases where you need to increase or decrease a variable by one, and the
unary increment (++) or decrement (--) operators help you out here.

If the operator is placed before the variable, this is known as a prefix operation. The variable
will be incremented/decremented, and the expression will return the new value.

If the operator is placed after the variable, this is known as a postfix operation. The variable
will be incremented/decremented, and the expression will return the previous value.

int a = 1;

int b = ++a; // b = 2, a = 2

int c = 1;

int d = c++; // b =2 , d = 1

Type Casting & Coercion

Oftentimes, you need to convert from one type to another. If you want to display a number, you
need to convert it to a string. If you want to convert from one type of number to another to
perform a mathematical operation.

Casting with static_cast
A lot of this time, this can be done implicitly by the compiler. But when you need to do an
explicit cast, you can use a static_cast

int main() {

int number = 3455;

double asDouble = static_cast<double>(number);

}

C-Style Casts
In older or more C focused codebases, you’ll likely see an older C style cast. This is roughly the
same as the cast above.

int main() {

int number = 3455;

double asDouble = (double)(number);

}

Overflow/Underflow

When casting numbers, you may run into overflow (value too low) or overflow (value too
high) errors. Depending on your system, this may just issue a warning, or completely stop the
execution of your program. As a general rule of thumb, don’t cast from a high information
number (double, float, long) to a low information number (int, short)

Control Statements & Scope

Control Statements

If/else
Lets your code branch based on the conditional expression inside the if statement.

#include <iostream>

using namespace std;

int main()

{

double number;

cout << "Enter a number: ";

cin >> number;

if (number > 100.0)

{

cout << "That number is greater than 100"

}

else

{

cout << "That number is less than or equal to 100"

}

}

Logical Operators & Short Circuit Evaluation

If you need to modify or combine logical expressions, you need to use a logical operator.

Operator Logical Equivalent Short Circuit Evaluation

!a NOT a (true <-> false) n/a

a || b a OR b If a is true, then b is not
evaluated.

a && b a AND b If a is false, then b is not
evaluated

Switch
If you have a long series of similar if else calls, sometimes it can be easier to group them
together as a switch statement.

switch (day) {

case 0: { cout << "Sunday!" << endl; break; }

case 1: { cout << "Monday!" << endl; break; }

case 2: { cout << "Tuesday!" << endl; break; }

case 3: { cout << "Wednesday!" << endl; break; }

case 4: { cout << "Thursday!" << endl; break; }

case 5: { cout << "Friday!" << endl; break; }

case 6: { cout << "Saturday!" << endl; break; }

default: { cout << "Invalid Day Number!"}

}

A good use case for switch statements is enumerators. At compile time, enumerators
collapse to another type, but while you are programming, they can be a useful construct to
help you keep track of numbers

enum Suit { Diamonds, Hearts, Clubs, Spades };

Suit suit = Suit::Diamonds;

switch (suit) {

case Suit::Diamonds:

case Suit::Hearts: {

cout << "Red cards!" << endl;

break;

}

case Suit::Clubs:

case Suit::Spades: {

cout << "Black cards!" << endl;

}

}

While Loops

While loops will repeat code as long as the condition at the top is true

int main()

{

double number;

cout << "Enter a number: ";

cin >> number;

int count = 0;

while (count < number)

{

cout << count << endl;

count++;

};

}

For Loops

A special kind of while loop, usually used to repeat some code a number of times. The
statement inside of the for loop has three components. The first section is run before the
loop executes (usually to create a counter), the second section checks to make keep the loop
running (usually checking the counter against a total), the last section runs after each loop
(usually to increment a counter).

int main()

{

double number;

cout << "Enter a number: ";

cin >> number;

for (int count = 0; count < number; count++)

{

cout << count << endl;

};

}

Break & Continue

When you are inside a loop, there may be times when you want to end a loop iteration
early, or break from the loop entirely. This can be done with continue and break
respectively.

In loops, break used to end the loop entirely. Continue is used to end this iteration, and
start again at the loop body.

In a switch statement, break is used to prevent case fallthrough.

int findNumberSum() {

int sum = 0;

for (int i = 0; i < 100; i++) {

// Ignore multiples of 5 and multiples of 7

if (i % 7 == 0 || i % 5) continue;

sum += i;

if (sum > 30) {

break;

}

}

return i

}

An example of using break and continue in a loop

switch (suit) {

case Suit::Diamonds:

case Suit::Hearts: {

cout << "Red cards!" << endl;

break;

}

case Suit::Clubs:

case Suit::Spades: {

cout << "Black cards!" << endl;

}

}

Break in switch statements is used to prevent fallthrough. Execution will pass through the
next statement, allowing you to perform a single block with multiple cases, but this can
lead to a lot of undefined behavior, so you should be careful

Scope

Most variables aren’t accessible forever, they have a scope. There are many kinds of scope in
C++, but the predominant one you’ll have to think about is block scope, which means that
the scope of a variable is the innermost set of curly braces.

Anytime you add a new set of curly braces, you are creating a scope. You can always access
the variables inside the scope directly outside of you, but you can’t access the scope inside
you, nor can you access the scope beside you.

{ // scope created

int a = 24;

{ // new scope is created, but a is still accessible

int b = 32;

a = b;

} // b goes out of scope

{ // new scope, a is accessible, but b is not

b = 34; // This is a compiler error

}

} // a goes out of scope

a; // This is a compiler error.

Study Questions
1. What is the correct format to print in C++?

a. system.out.print (“Hello World”);
b. print(“Hello World”)
c. cout << “Hello World” << endl;
d. cout >> “Hello World” >> endl;

2. How would you create an explicit cast?
a. static_cast

b. explicit_cast

c. cast_static

d. cast_explicit

3. In what order should one follow when creating an expression?
a. Parentheses, Unary Operators, Multiplication/Division/Modulo, Addition &

Subtraction
b. Addition & Subtraction, Unary Operators, Parentheses,

Multiplication/Division/Modulo
c. Parentheses, Multiplication/Division/Modulo, Addition & Subtraction, Unary

Operators
d. Unary Operators, Parentheses, Addition & Subtraction,

Multiplication/Division/Modulo

4. When should a programmer use a switch statement?
a. To replace the value of a variable with another set of values
b. To compare the value of a variable against a set of other values
c. To make your code easier to read

5. What is the purpose of the break keyword in a loop?
a. A signal to exit out of the loop
b. To break the current iteration and skip to the next one

6. What is the difference between = and ==?
a. = is an equal sign and == is a double equal sign
b. = is an assignment operator and == is a rational operator
c. = is a rational operator and == is an assignment operator
d. = is used in C and == is used in C++

7. What would be the output of this code?

#include <iostream>

using namespace std;

int main()

{

int a = 10;

if (a < 15)

{

time:

cout << a;

goto time;

}

break;

return 0;

}

a. 1010
b. 10
c. Infinitely print 10
d. Compile time error

CPSC 1070 Week 5 Notes
Micheal Merritt, Brendan McGuire, Daniela Arroyo

Object-Oriented Programming
Abstraction

Why is abstraction helpful?
Classes & OO Analysis (By Example)

OO Analysis: What does the Character Class need to do?
OO Analysis: What are the relationships with other classes?
character.h
character.cpp

Enumerators

Compiler Internals
Compilation
Linking

Arrays & Vectors
Element Access

Square Bracket Operators
.at()

Iteration
Index-Based Loops
Range-Based Loops

Study Questions
Answer Key

Object-Oriented Programming

For some programs, it makes sense to model the structure of your code after several discrete objects,
and the relationships between these constructs.

What are some use cases for an object-oriented style?
➔ Games or Simulations
➔ Modeling a real-world object
➔ Provide easy organization to a singular construct that your program will create many times

When might object-oriented programming be a bad choice for your program structure?
➔ Inheritance can lead to some unnecessary boilerplate. You should avoid creating abstractions

that do not have logical parallels (watch out for Manager or Provider classes)
➔ If you find yourself using a lot of static methods, a namespace may better suit your use case

Abstraction

One of the core principles of OOP, and Computer Science in general, is abstraction. Abstraction occurs
when specific implementation details of a program are hidden from the public interface.

Why is abstraction helpful?

➔ Don’t Sweat The Details. You shouldn’t need to worry about all of the particulars of vectors just
to use it.

➔ The programmers who made it probably know better. By restricting your access to only a few
public accessors/mutators, shooting yourself in the foot is a lot harder

➔ Internal changes can be made more easily. If the creator of the ADT has an optimization, they
can safely make it without messing up your code.

Classes & OO Analysis (By Example)
Let’s create a class to represent a character in a 2D game. Before we start programming, we need to
figure out the shape of the class, and what our class will need to do.

OO Analysis: What does the Character Class need to do?
➔ Should keep track of the player’s position, velocity, and acceleration
➔ Should provide accessors and mutators for these values
➔ Should have a public step function to process all the physics: adjust position & velocity
➔ Should have a public function to “render” the character to the screen

OO Analysis: What are the relationships with other classes?
This example only has one class, but let’s consider how a character class might interact with other
classes in a game
➔ Should talk to the renderer (access) to render the character onto the screen
➔ Has ownership over the items in the character’s inventory
➔ Would probably inherit from a more general Entity class (inheritance)

character.h
Now that we have a general idea of the class shape and requirements, let’s get coding! We’ll start with
the header file, which will define the general shape of the class.

#include <tuple>

/* These are header guards, so we can make sure the file never gets included more

than once. Not including header guards can lead to some really strange errors */

#ifndef CHARACTER_H

#define CHARACTER_H

using namespace std;

// This is the class definition, it should show the general shape of the class

you're creating, including a public and private definitions

class Character {

// We're going to store the position and velocity of the player character in

// private variables, and allow external code to access them using mutators

// and accessors. This will allow us to change this internal code without

having

// to mess up external code in the future

private:

double pos_x;

double pos_y;

double vel_x;

double vel_y;

double accel_x;

double accel_y;

// The public shape of the class, that external code can access. You should be

thoughtful of how and when you change this code because doing so requires you (or

other people) to go back and change the

// code that uses this method

public:

// Constructors, with a default constructor implementation to place the

character at (0,0)

Character(double x, double y);

Character();

// Destructor, to free memory when this object goes out of scope

~Character();

// Position Accessors and Mutators

void setPosition(double x, double y);

pair<double, double> getPosition();

// Velocity Accessors and Mutators

void setVelocity(double x, double y);

pair<double, double> getVelocity();

// Acceleration Accessors and Mutators

void setAcceleration(double x, double y);

pair<double, double> getAcceleration();

// Steps the computation for each frame, moving position a little, and

reducing velocity a little

void step();

// "Renders" the character to the screen (for now just prints the position

to the terminal)

void render();

};

#endif

character.cpp
Now that we’ve outlined how our class looks, let’s implement some of the specifics. Remember that
when you’re implementing a method in a class, use the scope resolution operator (::).

#include "character.h"

/**

* Initializes the player at the given coordinate

* @param x x coordinate

* @param y y coordinate

**/

Character::Character(double x, double y) {

pos_x = x;

pos_y = y;

vel_x = 0;

vel_y = 0;

accel_x = 0;

accel_y = 0;

};

/**

* Default Constructor, which initializes the player at (0,0).

* By using constructor delegation, we are able to easily provide a default

constructor

**/

Character::Character() : Character(0, 0) {};

/**

* Because we're not directly allocating any memory in the class, we shouldn't

need to put

* anything here in the destructor

**/

Character::~Character() {

}

/**

* Mutator for the position

* @param x x coordinate

* @param y y coordinate

**/

void Character::setPosition(double x, double y) {

pos_x = x;

pos_y = y;

}

/**

* Gets (accessor) the position of the current player character

**/

pair<double, double> Character::getPosition() {

return { pos_x, pos_y };

}

/**

* Mutator for the velocity

* @param x x coordinate

* @param y y coordinate

**/

void Character::setVelocity(double x, double y) {

vel_x = x;

vel_y = y;

}

/**

* Gets (accessor) the velocity of the current player character

**/

pair<double, double> Character::getVelocity() {

return { vel_x, vel_y };

}

/**

* Mutator for the acceleration

* @param x x coordinate

* @param y y coordinate

**/

void Character::setAcceleration(double x, double y) {

accel_x = x;

accel_y = y;

}

/**

* Gets (accessor) the acceleration of the current player character

**/

pair<double, double> Character::getAcceleration() {

return { accel_x, accel_y };

}

/**

* Steps through the kinematic calculations, updating the position and velocity

based on the acceleration

**/

void Character::step() {

pos_x += vel_x;

pos_y += vel_y;

vel_x += accel_x;

vel_y += accel_y;

};

/**

* "Renders" the character to screen, printing it out in the terminal

**/

void Character::render() {

pair<double, double> position = getPosition();

cout << "Render Character at (" << pair.first << "," << pair.second << ")" <<

endl;

}

/**

* In the main method, step through a basic example of instantiating and using a

Character Class

**/

int main() {

// Use the default constructor to initialize character at (0, 0)

Character player;

player.setAcceleration(2, 2);

while (true) {

player.step();

player.render();

// Slowly lower the players acceleration to simulate friction

pair<double, double> accel = player.getAcceleration();

player.setAcceleration(accel.first - 0.1, accel.second - 0.1);

}

}

Enumerators
Enumerators are most useful when you’re trying to represent a set number of categories, like months or
Grade Level. You can use the class specifier to namespace the items in your enum.

enum class Year

{

Freshman,

Sophomore,

Junior,

Senior

};

Year student = Year::Freshman;

int a = (int)student; // a = 0

By default, enums are represented at runtime by integers, starting at 0, and counting up. However,
this can be overridden if you so desire. By using a colon after the enum name, you can specify a type
to represent the enum at runtime

enum class Year : char

{

Freshman = 'F',

Sophomore = 'S',

Junior = 'J',

Senior = 'E'

}

Year student = Year::Sophomore;

char a = (char)student; // a = 'E'

Compiler Internals
When you compile a program with g++, what is actually happening? The compiler will usually go
through a few steps.

1. Compilation
In this step, the compiler will tokenize, parse, and validate your code file by file. The output of
this step is an object code file, which contains a base level intermediate representation, which
will be translated into the binary in the next step

g++ -c file.cpp

Produces an object file, file.o

2. Linking
In this step, the compiler will link together all of the object files that will comprise your binary.
By looking at the symbols in each object file, and connecting everything together, including code
from external sources, like the standard library.

The output of this step is a single binary .out file

Arrays & Vectors
Arrays and Vectors let you store many different values of the same type, in similar memory locations.
Arrays are a holdover from C, but still, find widespread use in C++ codebases because of their low
memory footprint and compatibility with the C Standard Library. Vectors are a new construct in C++ and
let you define arrays of arbitrary size, automatically.

Arrays Vectors

- Simpler memory model
- Must be static (number of elements

initialized at compile time)
- Degrades to a pointer when passed to a

function (pass by reference)

int numbers[6] = {1, 2, 3, 4, 5};

- C++ Class
- Automatically allocates/frees memory
- Can have an arbitrary (and changing)

number of elements
- C++ copy semantics apply when being

passed to function (pass by copy)

#include <vector>

vector<int> numbers({1, 2, 3, 4, 5});

Element Access
What good is a list of elements if you can’t access the individual elements. In C++, the primary way of
accessing elements in a group is using the [] operator. It’s important to remember that both of the
following methods return references to the data in question.

Square Bracket Operators
You can access contiguous elements by putting the desired index in square brackets. This works for
both Arrays and Vectors.

int num = numbers[2]; // num = 3, works for both the Array and Vector above

numbers[2] = 10; // Updates the location in memory

Things to be aware of when using square brackets
● Range bounds are not verified in either the array or the vector. This can lead to some strange

side effects if you do not bound check yourself
● Returns a raw pointer, so if you’re not careful, can lead to use-after-free errors

.at()
In addition to the [] operator, a C++ vector supports an additional method .at() which returns a
std::reference to the element at index i.

int num = numbers.at(2); // num = 3, works for only Vector

numbers.at(2) = 10; // Updates the location in memory

● Does ranging checking for you, and throws an exception if out of bounds
● Same return type as square brackets, so use-after-free errors are still possible.

https://owasp.org/www-community/vulnerabilities/Using_freed_memory

Iteration
There are several ways to iterate through items in arrays and vectors in C++, but the primary methods
are index-based loops and range-based loops

Index-Based Loops
These are the regular loops you are thinking about: define a starting point, and ending point, and how
much to increase by each time.

● Simple, work for almost everything
● Bound checks can be really frustrating (you need to make sure you start and stop in the right

place)
● Easy to change iteration order: can skip elements easily, can go backward easily

Plain Arrays

int SIZE = 5;

int numbers[] = {1, 2, 3, 4, 5};

for (int i = 0; i < SIZE; i++) {

cout << size[i] << endl;

size[i]++;

}

Vectors

#include <vector>

vector<int> numbers({1, 2, 3, 4, 5});

for (int i = 0; i < numbers.size(); i++) {

cout << size[i] << endl;

size[i]++;

}

Range-Based Loops
Using the colon syntax, we can iterate through all the elements in an array without worrying about out
of bounds errors

● Less freedom than index-based (need to iterate through every item, from start to finish)
● The same syntax for many different containers
● Don’t need to worry about out of bounds errors.

Plain Arrays

int numbers[] = {1, 2, 3, 4, 5};

for (int &num : numbers) {

cout << num << endl;

num++;

}

Vectors

#include <vector>

vector<int> numbers({1, 2, 3, 4, 5});

for (int &num : numbers) {

cout << num << endl;

num++;

}

Study Questions

1) Which of the following is the most accurate way to declare a getSide accessor method for a
Square class.

int getSide()

{

return side;

}

(A)

int Square::getSide(int)

{

return side;

}

(B)

int Square::getSide()

{

return side;

}

(C)

a) Option A.
b) Option B.
c) Option C.
d) None of these are correct

2) What is the output of this code?
3) enum Color

4) {

5) red,

6) green = 3,

7) blue,

8) yellow = 1,

9) brown

10) };

11)
12) Color r = static_cast<Color>(blue);

13) cout << r;

a) blue
b) 4
c) 1
d) 2
e) Compiler Error

3.) Which of the following Data types if any, can change its number of elements after declaration
a) Vectors
b) Arrays
c) Neither

4)What will this code output?
int sizes[] = {1, 2, 3, 4, 5};

for (int i : sizes)

{

if (i % 2 == 0)

{

continue;

}

cout << i++ << “ ”;

}

a) 2 4 6
b) 1 2 3 4 5
c) 1 3 5
d) 2 3 4 5 6 7

Answer Key
1.) Answer choice C is correct. Since this is an accessor method, it begins with the data type of

what’s going to be returned, an int. In C++ when writing a method for a class, you must state the
class name followed by a scope resolution operator(::) before you state the name of the function.

2.) Answer Choice B is correct. Whenever you define the exact value of an enum type and leave the
next one undefined, it defaults to being the previous value + 1. Therefore blue is 4 and brown is
two.

3.) Answer choice A is correct. When working with arrays, you must either explicitly or implicitly
define their size ex. Int foo[5]; or int foo[] = {1,2,3}; Vectors are special in that you can use the
push back(ads element at end)/ pop back(deletes element at end) methods to dynamically
adjust its size

4.) Answer choice C is correct. The for-each loop will check each value in the sizes integer array. If
the remainder when dividing that value by 2 is equal to zero, the loop will continue to the next
iteration, otherwise, it’ll cout that value. Since we used the POSTFIX(i++) operator, it’ll print out
1,3,5 instead of 2,3,6.

CPSC 1070 Week 7 Notes
Micheal Merritt, Brendan McGuire

Advanced Objects
This Pointer
Constant Member Function
Static Members
Friends of Classes
Copy Constructors and Memberwise Agreement
Operator Overloading

Advanced Objects
This Pointer
void File::setFileName(string file) {

this->file = file;

}

string File::getFileName() const {

return this->file

}

What does it do?
In a class member, this is a pointer to the
instantiated class object.

Why is it useful?
When you have a local variable that’s the same
as a member variable and need to distinguish
them

Constant Member Function
void Model::setValues(const double a,

const double b) {

this->a = a;

this->b = b;

}

double Model::getComputedValue() const {

return this->a + this->b

}

What does it do?
When you place const before a parameter, the
function cannot modify that parameter

When you place const after the parameter list
the function cannot modify the object state

Why is it useful?
These are useful annotations to limit how you are
able to modify state, which is a leading cause of
errors.

Static Members
class ShoppingCart {

private:

vector<double> prices;

static double taxRate;

public:

double computeTotal() const;

static double calculateTax(double a) {

return a * taxRate;

}

}

double ShoppingCart::computeTotal() {

double total = 0;

for (double price : prices) {

total += price;

}

return total + calculateTax(total)

}

What does it do?
Static members are shared across all instances of
a class, allowing you to share common behavior.

Shared static variables can be accessed in any
instance of the class

Shared static members can be called from any
member of the class

Why is it useful?
➔ Shared state and behavior across

instances
➔ Localized constants

Keep in mind: you should only have a few static
members per class. If you find yourself having a
lot of static members, a namespace may be
better suited to your needs.

Friends of Classes
int getPerimeter(Square sq) {

return sq.side * 4;

};

class Square

{

private:

int side;

friend int getPerimeter(Square sq);

Square(int s) : side(s){};

public:

int getArea();

}

What does it do?
Allows specific functions or classes to access the
private (or protected) members of a class by
specifying their status in the class declaration.

Why is it useful?
Friend classes should be used sparingly!

Declaring a class or function a friend breaks
encapsulation by allowing external code to
access your internals. This can be useful in a few
cases and when prototyping early on, but as your
code gets more complex it can lead to some
undefined behavior.

Copy Constructors and Memberwise Agreement
class RemoteFile

{

private:

string url;

bool fetched;

string contents;

public:

RemoteFile(string u) : url(u) {

fetched = false;

}

// Copy Constructor: Copy the URL

RemoteFile(const RemoteFile &old) {

fetched = false;

url = old.url;

}

void get() {

// Make the request

string response = request(url);

contents = response;

fetched = true;

}

}

RemoteFile a("http://example.com");

RemoteFile b = a;

What does it do?
Copy Constructors let you override the behavior
when you assign one object to another. This can
be incredibly useful for enforcing C++ copy
semantics.

By default, assigning an object to another will
copy all of its member variables to each other.

Why is it useful?
Memberwise Agreement and Copy Constructors
make it much easier to copy objects around.

As a general rule, C++ prefers copying data over
changing data ownership, and copy constructors
allow you to control this behavior to make your
class more predictable and easy to work with.

Operator Overloading
class JoinableArray

{

private:

vector<double> values;

public:

// Take an initializer list to pass to

the internal vector

JoinableArray(initializer_list<double>

inital) : values(inital){};

// Copy constructor to copy values

JoinableArray(const JoinableArray &old)

: values(old.values){};

JoinableArray operator+(JoinableArray

right)

{

// Use the copy constructor to copy

all the new values to the output array

JoinableArray combined = *this;

// Insert the right hand vector into

the combined vector

combined.values.insert(combined.values.end()

, right.values.begin(), right.values.end());

return combined;

}

}

JoinableArray a({3.93, 2.34, 244.0});

JoinableArray b({1.0, 2.0, 3.0});

JoinableArray c = a + b;

// C should have values of { 3.93, 2.34,

244.0, 1.0, 2.0, 3.0 }

What does it do?
By declaring a specific operator method on a
class, you can redefine how that operator
works with your specific class.

Why is it useful?
This can reduce the number of concepts that
the programmer needs to know when they are
interacting with your class: instead of needing
to remember that it has an add function, you
can simply use the regular add. This can also
help your code feel more natural and be easier
to read.

Be aware though: you are overloading
standard behavior, which can lead to developer
confusion

Questions
1. Which of the following is not true about copy constructor

a. They’re initialized by default
b. They must must be defined in the program before being used
c. They can modify the member variables of the object being copied

2. True or False: When using an object as a parameter in a friend function, you must use the
indirection operator.

a. True
b. False

3. Which of the following is the correct copy constructor for the RemoteFile class with member
variables fetched and url?

RemoteFile(const RemoteFile &old) {

fetched = false;

url = old.url;

}(A)

RemoteFile(const RemoteFile old) {

fetched = false;

url = old.url;

}(B)

Answer Key
1. B. If you don’t declare a copy constructor then one will be initialized by default. However,

problems can arise with memory addresses between copied objects and the originals, so a
declared copy constructor can help to avoid them

2. B. The friend function needs the memory address of an object. You could enter in an object
pointer or use the & symbol to get the address.

3. A. You need the memory address of the file you’re trying to copy.

CPSC 1070 Week 8 Notes
Micheal Merritt, Brendan McGuire

Copy Semantics & Operator Overloading
Copy Semantics

Why does C++ do this?
Copy Constructors
Operator Overloading

Extending Class Behavior

File Streams
File Open Methods
Stream Operators

Stream Insertion
Stream Extraction

Other Data Manipulation Methods
getline(char* s, streamsize n, char delim)
get()
peek()
put(int ch)
seekg(streamoff offset, ios_base::seekdir place)
read(char *buffer, int numBytes)
write(char *buffer, int numBytes)

Handling Errors

Copy Semantics & Operator Overloading

6Copy Semantics
By default, C++ uses Copy Semantics. This means that when you assign one variable to another, by
default, C++ will copy that data to a different portion of memory instead of creating two references to
the same data.

Why does C++ do this?

Copying data, instead of managing references, significantly reduces the programmer overhead in
managing data lifetimes. It’s a tradeoff between safety and memory

However, when you have class managing their own memory, this default behavior can introduce some
weird undefined behavior. Copying a vector, for example, without properly duplicating the data inside
would break the programmer’s expectation of copy semantics. That is to say, when a programmer
assigns a vector to another value, C++ has taught them that this creates a copy.

vector<int> a({ 1, 2, 4, 2, 4 });

vector<int> b = a;

So how do we live up to the programmer’s expectations?

Copy Constructors
Copy constructors let you define how your class handles that operation above. For example, in a vector,
you would want to copy all of the data into a new region of memory.

Below is the actual implementation of the copy constructor for the std::vector class, stripped of some
preprocessor detail. I know it looks intimidating, but give it a look!

vector(const vector& __x) : _Base(__x.size()) {

this->_M_impl._M_finish =

std::__uninitialized_copy_a(__x.begin(), __x.end(),

this->_M_impl._M_start,

_M_get_Tp_allocator());

}

You can see how this copy constructor calls a function to copy the contents of the passed vector into the
current vector’s memory. This helps to preserve the C++ Copy Semantics, and keep the programmer’s
expectations consistent.

Operator Overloading
Operator overloading lets you change how specific operators work for your class. By declaring a specific
operator method on a class, you can redefine how that operator works with your code.

This can reduce the number of concepts that the programmer needs to know when they are interacting
with your class: instead of needing to remember that it has an add function, you can simply use the
regular add. This can also help your code feel more natural and be easier to read.

Be aware though: you are overloading standard behavior, which can lead to developer confusion. Be
mindful of the Principle of Least Surprise; your code should strive to be as straightforward as possible.

class JoinableArray {

private:

vector<double> values;

public:

// Take an initializer list to pass to the internal vector

JoinableArray(initializer_list<double> initial) : values(initial){};

// Copy constructor to copy values

JoinableArray(const JoinableArray &old) : values(old.values){};

JoinableArray operator(JoinableArray right)

{

// Use the copy constructor to copy all the new values to the output array

JoinableArray combined = *this;

// Insert the right hand vector into the combined vector

combined.values.insert(combined.values.end(), right.values.begin(),

right.values.end());

return combined;

}

}

JoinableArray a({3.93, 2.34, 244.0});

JoinableArray b({1.0, 2.0, 3.0});

JoinableArray c = a + b;

// C should have values of { 3.93, 2.34, 244.0, 1.0, 2.0, 3.0

File Streams
One of the concepts that can make C++ more powerful is the concept of streams. A single abstract idea
is able to represent a wide variety of different I/O tasks: reading/writing to standard output, strings, and
now, files!

The fstream header allows you to parse files as streams, so you can use all the same techniques you
used to manipulate standard I/O!

#include <fstream>

using namespace std;

ifstream inFile("parse.txt"); // Creates a stream to read a file

ofstream outFile("run.log"); // Creates a stream to write to a file

fstream file("complete.log", ios::out | ios::app); // Creates a stream to append

to a file

File Open Methods
The second argument in the constructor for the file stream classes includes a number of flags you can
set to customize the behavior of the class in a few specific situations. To include multiple of these fields
together, you can use the pipe operator (I) to create a bitmask of all the options you want.

Flag Meaning

ios::app Creates a file if it doesn’t exist, appends to the end of the file if it does

ios::ate Same as append, but you are not allowed to seek to previous parts of the file

ios::binary Opens the file in binary mode

ios::in Opens the file to read

ios::out Opens the file to write

ios::trunc Erases/truncates a file if it exists already

Stream Operators
Like Standard I/O, the best way to interact with fstream is using the Stream Insertion (<<) and Stream
Extraction operators, because they handle whitespace, serialization, and parsing for you.

Stream Insertion

double value;

outFile << "PROGRAM START " << time << endl;

outFile << "value = " << value << endl;

Stream Extraction

double amount, date, balance;

inFile >> amount >> date >> balance;

Other Data Manipulation Methods
Sometimes, the stream manipulators won’t work for your use case, so the fstream objects contain some
additional methods to help manipulate the file. These functions are less “magical” than the steam
manipulators, which is both a blessing and a curse. You will need to handle serialization, parsing, and
whitespace yourself, but you get more granular control about what bytes exactly you are reading and
writing.

getline(char* s, streamsize n, char delim)

(Note, if you do not specify delim, it defaults to \n)
Fills the passed buffer from the file, until either it reaches the max number characters n, or it encounters
the delimiter (defaults to newline)

ifstream logFile("log.txt");

get()

Retrieves a single character from the file, advancing the file pointer.

ifstream logFile("log.txt");

vector<char> chars;

while (!logFile.eof()) {

chars.push_back(logFile.get());

}

peek()

Similar to get, except it does not advance the file pointer, allowing you to “peek” what the next value is,
without consuming it

ifstream logFile("log.txt");

char start = logFile.peek(); // Gets the first char in the file

put(int ch)

Writes a single character to the stream.

ofstream logFile("log.txt");

logFile.put('H');

seekg(streamoff offset, ios_base::seekdir place)

Moves the file pointer to a specific location, relative to the start, end or current position of the pointer,
plus an offset.

ifstream logFile("log.txt");

logFile.seekg(0, ios::beg); // Start of file

logFile.seekg(10, ios::cur); // Seek forward 10 bytes

logFile.seekg(-10, ios::end); // 10 bytes from the end of the file

read(char *buffer, int numBytes)

Reads a binary chunk of data from ifstream. Need to specify a buffer to fill and a number of bytes to
read.

ifstream imageFile("config.png", ios::binary);

char header[31];

imageFile.read(&header, 30);

write(char *buffer, int numBytes)

Writes a binary chunk to an ofstream. Need to specify a buffer, and the number of bytes to write.

ofstream secondFile("second.png", ios::binary);

secondFile.write(&header, 30);

Handling Errors
After you perform an operation on a stream class, you can evaluate the truthiness of the stream class to
determine whether the operation was successful.
To get more information, you can use the resultant bitmask to determine the exact error. You’ll want to
use the various getter methods on fstream to determine the exact cause of error

Method Associated Bit(s) Explanation

eof() ios::eofbit Bit is set, and method returns true when the End Of File is
reached

fail() ios::failbit
ios::hardfail

Returns true when an error (failbit) or an irrecoverable error
(hardfail) occurs. This is for a logical I/O error

bad() ios::badbit Returns true when ios::badbit (read/write error) is set

good() ios::goodbit Returns true when ios::goodbit (no errors) is set

clear() N/a Clears set flags

Questions
1. Given that log.txt is an empty file, What will this code block output?

fstream logfile;

logfile.open("log.txt", ios::out | ios::in);

logfile.put('B');

char ch = logfile.get();

cout << ch << endl;

A) Compile Error
B) -1
C) B
D) Nothing.

2. Which of the following must be included for string formatting
A) <string>
B) <sstream>
C) <std>
D) <fstream>

3. What will the following code block print out
int b = strcmp("ABc", "abC");

if (b < 0)

{

cout << "str1 less than str2!" << endl; (A)

}

else if (b > 0)

{

cout << "str 1 greater than str2!" << endl; (B)

}

else

{

cout << "str 1 equal to str2!" << endl; (C)

}

A) A
B) B
C) C
D) Compiler Error

Answer Key
1. D). After using point the “pointer” looking at the while goes past the B character. Thus it

reads white space and prints nothing to the terminal.
2. B). Sstream is the correct class to include
3. A) This will not be a compiler error, the result will be a number stored in the b integer.

Strcmp looks at the ASCII code rather than comparing string length/characters/cases.
ABc is a lower ASCII value than abC (check ch. 12 in the book for a chart).

CPSC 1070 Week 10 Notes
Micheal Merritt, Brendan McGuire

Stacks & Queues
Stacks (LIFO)
Queues (FIFO)
Linked Lists

Polymorphism
Function Overriding & Overloading

Overloading
Overriding

Final Keyword
Templates
Virtual Functions & Function Binding
Pure Virtual Functions & Abstract Classes

Exceptions
Old C-style Exception Handling
C++ Try/Catch

Command Line Arguments

Stacks & Queues
Sometimes, arrays and vectors just don’t do it. Stacks and Queues are new data structures for working
with data sets, with a focus on how the items are added and removed. A basic explanation of their
concept and some common use cases are included.

Stacks (LIFO)
A stack is a last in first out linear collection of elements.
➔ Linear collection means it stores a bunch of items in order (like an array)
➔ Last-In First-Out means that the most recent item to go in is the first one to come out.

◆ Return address for function calls
◆ Plates in cafeteria

You can find a nice implementation of a stack on here

Queues (FIFO)
A queue the inverse of a stack, a first in, first out
➔ Linear collection means it stores a bunch of items in order (like an array)
➔ First-In First-Out means that the earliest item to go in is the first one to come out.

◆ A line in the dining hall
◆ Checklist

An example implementation of a queue can be found here

Linked Lists
A linked list is a way to achieve dynamic-length, iterable lists without need to have a contiguous block
of memory. This allows you to quickly expand linked lists without the need for massive block
allocations.

This occurs by having a number of elements, with each one pointing to the next (this is a singularly
linked list)

https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.techiedelight.com/queue-implementation-cpp/

Polymorphism

One of the hardest parts of software development is having to predict future requirements, and
structure your code to be able to accommodate them effectively.

Polymorphism is a powerful tool for this, because it lets you write code once, and have it work for many
different forms (types). In C++, there are a whole bunch of language features that let you write code
polymorphically.

Function Overriding & Overloading
Some of the most basic polymorphism in C++ occurs with function overloading and overriding. These
concepts allow you to have multiple function definitions for functions with the same name.

Overloading

In many codebases, you will want a function to be able to take many different types of arguments, and
potentially have differing behavior to handle each of them.

Function Overloading lets you define several functions with the same name, but different arguments,
and different function bodies!

void debug(double value) {
cout << "DOUBLE " << value << endl;

};

void debug(int value) {
cout << "INT " << value << endl;

};

void debug(vector<int> value) {
cout << "VECTOR" << endl;
for (auto &item : value) {
cout << " " << item << endl;

};
};

In the above example, each function definition has a different argument list, and different
implementations. This can be an incredibly useful tool for letting your code be more general &
compatible.

Overriding

Overriding is a slightly different concept in C++, having to do with how derived classes deal with
inheritance.

Function Overriding occurs when a derived class redefines how the base class implements a specific
method.

class Rectangle {

private:
int width;
int height;

public:
Rectangle(int w, int h) : width(w), height(h) {};
Rectangle() : width(1), height(1) {}

int area() {
return width * height;

}

};

class Square : public Rectangle {

private:
int side;

public:
Square(int s) : side(s) {};

int area() {
return side * side

};

};

In the above example, the derived class Square is redefining what the area method means for Squares.
Notice how Rectangle::area() and Square::area() have the same signature. This is what distinguishes
overriding from overloading.

Final Keyword

If you do not want a derived class to override a class method, you can final at the end of a prototype to
make it inextensible.

int Rectangle::area() final;

Templates
One thing you may have noticed in the previous example for overloading is that both of the function
implementations for int and double were the same.

In fact, there are very many situations where you want your single function body to be able to work
with many different types.
➔ Reduce code repeat. If you ever need to change the debug function, perhaps not to include a

newline, having to change it in multiple places can be annoying and error-prone
➔ Handle New or Custom Types. If you have to write a bespoke implementation of your function

for every type that you want to be able to use it, your code base will be extremely long and
repetitive, but also quite fragile. Imagine if a new type is introduced or created in your codebase.
You want your code to just work with this new object without having to make changes if
possible.

The tool that lets you solve this problem is C++ templates. Templates allow you to declare a single
function implementation, and have it work for any number of types. Let’s take a look at how we can
refactor the above example to work for any type that can be outputted to stdout, not just ints and
doubles.

template <typename T>
void debug(T value) {
cout << "T " << value << endl;

};

template <typename T>
void debug(vector<T> value) {
cout << "VECTOR" << endl;
for (auto &item : value) {
cout << " " << item << endl;

};
};

(Slight note, we’re using the C++11 style typename specifier as opposed to the older class specifier. For the most
part these are equivalent, however there are some slight differences, which you can read about here if you’re
interested)

We’ve upgraded our debug function to work with any type that can be printed, as well as all vectors of
types that can be printed!

Virtual Functions & Function Binding
Again keeping with this theme of code reuse, let's look at pointers to objects. In C++, you are allowed to
use a pointer to a derived class in place of the pointer to the base class. For example, if you have a
function that takes a pointer to a Rectangle (above), passing a Square pointer shouldn’t be an issue.

Why is this ok?
➔ Because of inheritance rules, we know that anything public in the base class is present on the

derived class
➔ We want to be able to extend the functionality of a class by deriving from it, and still be able to

use functions which take the original class

void printArea(Rectangle *rect) {
cout << rect->area() << endl;

};
int main() {
Square sq(5);
printArea(&sq); // This is ok!

}

However, when you start to override class methods, you can start to run into some weird undefined
behavior: you will end up calling the base class method, instead of the derived one! (For more
information on why this happens, check out the Monomorphization section at the end of this topic)

int Rectangle::area() {
cout << "RECTANGLE AREA" << endl;
return width * height;

}

int Square::area() {
cout << "SQUARE AREA" << endl;
return side * side;

}

https://stackoverflow.com/questions/2023977/difference-of-keywords-typename-and-class-in-templates

void printArea(Rectangle *rect) {
cout << rect->area() << endl;

};

int main() {
Square sq(5);
printArea(&sq);

}

If you run this example, you will see that “RECTANGLE AREA” will be printed to the console, because
printArea takes a pointer to a Rectangle.

So what if we want to use the new Square area method when we pass a Square? We should make area
a virtual function to ensure that the function is bound correctly.

Virtual functions ensure that the correct function is called for an object, regardless of the type of
reference (or pointer) used for function call. Note that ensuring correct polymorphism at runtime does
incur a slight performance overhead, because the function call is resolved at runtime. For nearly all
applications, however, this performance consideration will be inconsequential.

virtual int Rectangle::area() {
cout << "RECTANGLE AREA" << endl;
return width * height;

}

virtual int Square::area() {
cout << "SQUARE AREA" << endl;
return side * side;

}

void printArea(Rectangle *rect) {
cout << rect->area() << endl;

};

int main() {
Square sq(5);
printArea(&sq);

}

Pure Virtual Functions & Abstract Classes
Oftentimes in the base class, you will want to define some sort of interface that all derived classes must
implement. In C++ this is possible with pure virtual functions. These are class methods which any class
deriving must implement themselves, and are defined by writing =0 after the function prototype.

class Animal { public: virtual void id()=0; };

Now, any class that derives Animal must implement id. Defining at least one pure virtual function
makes Animal an abstract class. These classes define the general interface that all animals must have,
however, Animal itself should never be instantiated.

This makes sense: there are no just animals in nature, there are kangaroos, or dogs, or elephants, or
birds, or whatever.

Exceptions

Old C-style Exception Handling
To help motivate how C++ style extensions are useful, let’s first take a look at how errors in C are
handled. Specifically, let’s look at File IO.

After every function call, the programmer is expected to check against a global variable (or global
function) to see if the function they just called caused an error, handle it as best they could, and then
continue function execution if possible. This sounds easy, but can get real verbose real fast.

#include <cstdio>

int main() {

// Open a file
FILE *handle = fopen("file.txt", "r");

// wait, gotta check if it opened successfully
if (ferror(handle)) {
printf("Something went wrong when opening the file?!");

}

// Okay, now we can read from the file
char ch;
while ((ch=fgetc(handle)) != WEOF)
printf("%x ", ch);

};

Having to constantly check for errors in this way can make your code pretty hard to read, so C++
introduced a new feature to lump this error checking code together a little more.

C++ Try/Catch
Try catch is a more expressive and automatic means of detecting errors. Inside a try block, you can
throw any type, and C++ will unwind the stack, attempting to find an appropriate catch block to handle
the type. If C++ cannot find an appropriate try-catch block, then the program may terminate.

This more easily allows for graceful failure than the old C-style system, which is quite brittle.

void doFn() {

try {

// This would catch to doFn() catch block
throw 4.0;

// This would catch to main block
throw 2;

// There's no catch block to handle it, program immediately terminates
throw "o";

} catch (double d) {
cout << "DOFN" << d << endl;

};

};

int main() {

try {
doFn();

} catch (int i) {
cout << "ERROR " << i << endl;

}

};

Command Line Arguments
When writing programs that users interact with over the command line, accepting program arguments
is an important method of input.

In C and C++, command line information is passed to the main function, like so

int main(int argc, char *argv[]);

Where argc refers to the number of command line arguments, and argv refers to the array of is
character pointers listing all the arguments.

int main(int argc, char *argv[]) {

for (int i = 0; i < argc; i++) {
printf("%s", argv[i]);

};

};

Questions.
1. What occurs when an unhandled exception is present in the program

a. Compiler Error
b. The program terminates (Segmentation fault)
c. Program rewinds to find try statements with matching handles.

2. When does a template function use memory
a. When the program starts
b. When it is called

3. Which of the following cases would classify a function as being an Overridden Function
a. Same class, different signatures
b. Subclass, same signatures
c. Subclass, different signatures
d. Same class, same signatures

Answer Key
1. C. The program will trace back through main to find a compatible try handle, if it reaches

the end the program will terminate
2. B. When the template function is called
3. B. An overridden function is a subclass specific function that Overrides the base classes

implementation. That’s why it has the same signatures(parameters)

	Week 3 Notes
	Week 5 Notes
	Week 7 Notes
	Week 8 Notes
	Week 10 Notes

