
CPSC 2310 Exam 1 Study Guide
Does not include any C review

Chapter 1
Phases of the Compiler System

1. Preprocessor (.i file)—Modifies files according to preprocessor directives (#include, #define, etc)
2. Compiler (.s file)— Translates source files into an assembly-language program
3. Assembler (.o files)— Translates assembly language to machine instructions, produces a

relocatable object file (which appears like gibberish)
4. Linker (executable file) — Links together many object files into a single executable.

Hardware Organization of a System
CPU — Central Processing Unit. Responsible for actually performing machine instructions

ALU — Arithmetic Logic Unit. Performs arithmetic and logical operations.
PC — Program Counter.Word sized register that holds the address of the current instruction
USB — Universal Serial Bus. Allows external devices to connect to computer

System Buses — Carries information between components
System I/O Devices — Connect outside information to the computer (mouse, keyboard, screen, etc)
System Cache — Allows for fast access to frequently used data. Much much faster than even RAM.
There are layers of cache: L0 (fastest), L1, L2, L3, RAM, Hard Storage (slowest)

Operating Systems & Hardware Abstractions
Primary Purposes of OS:

- Protect the hardware from misuse
- Provide programs with simplified mechanisms to manipulate low-level devices
- Allocate system resources

Processes — Abstraction for a running program, allows for easier OS-level concurrency.
Threads — Inside a single process, multiple execution units, allow for easier async I/O. More lightweight
than processes.
Virtual Memory — Abstraction over main memory, give each process the impression they have access to
main memory

Program Code & Data (0th address)— Size unchanged after program start
Heap—Dynamic memory, grows and shrinks as needed (grows away from 0th)
Shared Libraries— stdlib, stdio, etc.
Stack—Grows and shrinks as needed (grows towards 0th)
Kernel Virtual Memory— Reserved for OS

Networking — Network driver can be thought of as just another I/O device
Virtual Machine — Emulation of an entire computer, including hardware, OS, and programs



Concurrency & Parallelism
Concurrency — the general concept of a system with multiple, simultaneous activities

Thread-Level — Rapidly switching between threads and processes gives illusion of parallelism
Parallelism — refers to the use of concurrency to make a system run faster
Multiprocessor System — Multiple processors, one Operating System

Unique L1 and L2 chaches
Shared L3 cache

Hyper-Threading — allows a single CPU to execute multiple control flows, by duplicating some parts of
the CPU
Instruction-Level Parallelism — Modern CPUs can execute multiple instructions at once.

Static — Determined at compile time which instructions to parallelize
Dynamic — Determined at runtime by the processor which instructions to parallelize

The C Language
- Developed in 1969 by Dennis Ritchie at Bell Labs
- “Portable assembly”
- Small and simple language
- Includes a standard library

Binary, Decimal, and Hexadecimal
Binary — Base 2. May or may not have 2 after
Decimal — Base 10.
Hexadecimal — Base 16. Usually starts with 0x

Binary→ Decimal

Multiply each power of 2 by the relevant bit

1110 0001
(1)(20) + (0)(21) + (0)(22) + (0)(23) + (0)(24) +
(1)(25) + (1)(26) + (1)(27)
1 + 32 + 64 + 128 = 225

Decimal→ Binary

Divide by two repeatedly until you get 0, then
reconstruct
55 / 2 = 27 r 1
27 / 2 = 13 r 1
13 / 2 = 06 r 1
6 / 2 = 3 r 0
3 / 2 = 1 r 1
1 / 2 = 0 r 1
55 = 0011 0111

Binary→ Hexadecimal

Group into 4s and convert each one individually
according to its sum

1100 0110 1000 0111

Hexadecimal → Binary

Convert each digit into its 4-bit decimal
representation and string them together

0xFABC = 1111 1100 1101 1110



A 6 8 7

1100 0110 1000 0111 = 0xA687

Writing 2n in Hexadecimal
Write 1 with n 0 zeroes, and then convert to hex by grouping.
25= 0010 0000 = 0x20

Boolean Algebra

Bitwise Not (~)

Inverts all the given bits
~10001110 = 0111 0001

Bitwise And (&)

For a & b, 1 where both a and b are 1
0110 & 1011 = 0100

Bitwise Or (|)

For a | b, 1 1 where either is 1
0110 | 1010 = 1110

Bitwise XOR (^)

For a ^ b, 1 where either is 1 but not both
0110 ^ 1010 = 1100

Leftshift (<<)

Just logical
a << k = a * 2^k
Remove k leftmost bits, and add k 0s on the right

1100 1111 << 3 = 0001 1001

Rightshift (>>)

Can be logical (unsigned) or arithmetic (signed)
a >> k = a / 2k

If Logical
Remove k rightmost bits, and add k 0s on the left
1000 0001 >> 4 = 0001 0000

If Arithmetic
Remove k rightmost bits. If the significant bit of
the original was 1, add k 1s, else add k 0s
1110 1100 >> 2 = 1011 0011



Data Sizes
Word Size — Maximum number of bits the processor can process at once, typically 8 bytes (64 bits)

Virtual Address Size is 2w - 1 (4 GB on 32-bit systems, 16 exabytes on 64-bit systems)

C Declaration Size (bytes)

Signed Unsigned 32 Bit Systems 64 Bit Systems

char unsigned char 1 1

short unsigned short 2 2

int unsigned int 4 4

long unsigned long 4 8

int32_t uint32_t 4 4

int64_t uint64_t 8 8

char* 4 8

float 4 4

double 8 8

Multiple-Byte Objects
When an object spans multiple bytes, you need to make a choice about

- The address of the object
- What order to put the bytes

Little Endian — Least Significant Byte to Most Significant Byte
Big Endian — Most Significant Byte to Least Significant Byte

2147483647 = 0x7FFFFFFF
Could be stored as FFFFFF7F (Little Endian) or 7FFFFFFF (Big Endian)

Usually, endianness is completely invisible to the programmer
When Endianness Matters

- When communicating over a network, network devices must be cognizant of
transmitting data in the correct order according to networking standards

- When representing an address in assembly.
- Occasionally when typecasting in C



Representing Strings
In C, they are an array of characters terminated by a null byte (\0000)
Characters are encoded into numbers, by some text encoding (ASCII, Unicode, etc)
Representing Integers (Signed vs Unsigned)
For signed bits, use the first bit to represent the sign of the number.
The range for unsigned data is 0 to (2w - 1)
The range for signed data is (-2w-1) to (2w-1 - 1)

Ways to Represent Signed Integers

- Sign-Magnitude. The value of the integer bits added together, except for the most significant bit,
the most significant bit tells you the sign of the number (1 = negative, 0 = positive)

- 1’s Compliment. If num is positive (MSB is 0), add up the values. If negative (MSB is 1),
complement the bits and then add them.

- 2’s Compliment. Compliment the bits and then add one. The most significant bit is essentially
-128

Converting Between Integer Types

When converting up, no data will be lost, but when converting to a smaller representation, the lower
bits will be dropped. Additionally, consider if the conversion is between a signed and an unsigned value,
additional complications apply

RH Side (From) LH Side (To) Method

unsigned char char The bit pattern is preserved, the highest order bit becomes
sign bit

unsigned char short Zero extend

unsigned char unsigned short Zero extend

unsigned char unsigned long Zero extend

unsigned short char Preserve low-order byte (lose high order byte)

unsigned short long

unsigned short unsigned char

unsigned long

unsigned long

unsigned long

unsigned long




