
CPSC 2310 Exam 3 Study Guide
Brendan McGuire (bmmcgui@clemson.edu)

Good luck all on the exam! Go crush it!

Binary Multiplication
In order to multiply numbers together in registers more efficiently, a specific hardware configuration is
used. There are a number of components to this system, as shown below. Since multiplication is just
repeated addition, we will just add one number (the multiplicand) to itself a number (the multiplier)
times.

Binary Multiplication is more complicated than Binary Addition, often requiring 8-10 steps to complete.
Modern chips have been able to reduce that to 3-5 steps.

Carry— Single bit flag that indicates a carry
needs to be performed. Initially 0.

Accumulator— Register that holds the
intermediate result of the computation. Initially
set to 0.

Multiplier— Also known as Q, the number that
indicates the number of additions that are still
required.

Multiplicand— Also known as M, the number
that gets repeatedly added to determine the
computation.

Algorithm

Set the carry flag and the accumulator to 0

Repeat this for each bit in the multiplier:

If the Least Significant Bit of Q is one, then add M to the accumulator

Shift ACC + Multiplier right 1 place

The value in the accumulator is the result of the multiplication

mailto:bmmcgui@clemson.edu

Worked Example

Let's consider the example for 11 (1011) multiplied by 15 (1111). We will set 11 as the multiplier and
15 as the multiplicand.

Step 1:
C Accumulator Multiplier
0 0000 1011

+ 1111
0 1111

>>
0 0111 1101

========================

Step 2:
C Accumulator Multiplier
0 0111 1101

+ 1111
1 0110
>>

0 1011 0110

========================

Step 3:
C Accumulator Multiplier
0 1011 0110

+ 0000
0 1011
>>

0 0101 1011

========================

Step 4:
C Accumulator Multiplier
0 0101 1011

+ 1111
1 0100
>>

0 1010 0101

Result: 1010 0101
Verify:
128 + 32 + 4 + 1 = 165

11 * 15 = 165

The least significant bit is 1, so add the multiplicand to the
accumulator

Right shift the carry, accumulator and multiplier by 1. Notice how
the rightmost bit in the accumulator shifts into the multiplier.

The least significant bit is 1, so add the multiplicand to the
accumulator. The addition overflows, so set the carry bit

Right shift everything! Notice how the carry bit shifts into the
accumulator, and the zero at the end of the accumulator shifts into
the multiplier

The least significant bit is zero, so do not add the multiplicand.

Right shift everything!

The least significant bit is 1, so add the multiplicand to the
accumulator. The addition overflows, so set the carry bit

Right shift everything! We now have our result, the accumulator
and the multiplier in succession. Verify the results are correct!

Integer Division
When dividing integers, remember that it is not possible to store a fractional result in an integer. This
means that the results will get rounded, by a number of different rules. Remember that there are
different types of rounding, as illustrated below. Note that Round Down and Round Away From Zero
are only different for negative integers. Similarly, Round Up and Round Away From Zero are the same
for positive numbers, and different for negative integers

Original Value
Round Down
(towards -∞)

Round Up
(towards ∞)

Round Towards
Zero

Round Away
From Zero

+23.67 +23 +24 +23 +24

+23.00 +23 +23 +23 +23

0 0 0 0 0

-23.00 -23 -23 -23 -23

-23.67 -24 -23 -23 -24

Division By A Power of Two
You can use the right shift operator to do this. If the number is signed, use an arithmetic right shift, and if
the number is unsigned, use a logical right shift. Division is even more difficult for the CPU, often
requiring 30+ CPU steps.
Unsigned Division
To divide c / 2k perform a logical right shift on c, k
times. The result is rounded towards zero!

uint8_t c = 0b01010001; // 81

uint8_t k = 3; // 2^3 = 8

// 01010001 >> 3 = 00001010

// 81 / 8 = 10.12500 → 10

uint8_t result = c >> k; // 10

Signed Division
To divide c / 2k perform an arithmetic right shift on
c, k times. The result is rounded down! This can
have unexpected consequences for negatives

uint8_t c = 0b01010001; // 81

uint8_t k = 3; // 2^3 = 8

// 01010001 >> 3 = 00001010

// 81 / 8 = 10.12500 → 10

uint8_t result = c >> k; // 10

int8_t c = 0b10101111; // -81

int8_t k = 3; // 2^3 = 8

// 10101111 >> 3 = 11110101

// -81 / 8 = -10.12500 → -11

int8_t result = c >> k; // -11

Signed Division Bias
In order to reduce rounding errors when doing two’s complement division, we can bias the value by
adding (1<<k) - 1 before performing the right shift (where k is exponent of the power of 2). This will
cause the signed division to round towards zero! That is helpful for negative numbers only!

Floating Point Numbers
Of course, computers need to do more than just handle integers. Being able to represent fractional
numbers is also incredibly important!

History
1970s — Floating point numbers were all handled differently by each manufacturer
1976 — Intel hires Dr. William Kahan to develop the floating point standard. Kahan worked with IEEE
to develop IEEE 754, which is now the universal standard for floating point representation.

Fractional Binary Numbers
The basis of IEEE 754 is fractional binary numbers. Have all numbers to the right of the binary point
(equivalent to the decimal place) be negative powers of two

26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6

0 1 0 1 0 1 0 . 1 0 1 0 0 1

2^5 + 2^3 + 2^1 + 2^-1 + 2^-3 + 2^-6 =
32 + 8 + 2 + 1/2 + 1/8 + 1/64 =
42 41/64 = 42.640625

Limitations of Fractional Binary Numbers
In the same way that fractional decimal numbers cannot perfectly represent all fractions, fractional
binary numbers can’t either. They can only represent numbers that are multiples of a power of 2. All
other numbers must be approximated.

We can get arbitrarily close to the actual number by increasing the number of bits we use. For example,
lets try to represent 0.20 in binary.

Binary Representation Fractional Equivalent Decimal Equivalent

0.0 0/2 0.0

0.01 1/4 0.25

0.0011 3/16 0.1875

0.001101 13/64 0.203125

0.00110011 51/256 0.19921875

As we increase the number bits, we are getting closer and closer, but we will never reach the value
exactly!

IEEE 754 Standard
The standard builds on the idea of fractional binary numbers, but instead of actually representing all of
those, it uses scientific notation, storing a sign bit, mantissa, and an exponent in the form

-1^(Sign) + Mantissa * 2^Exponent

Single Precision VS Double Precision
As we saw above, more bits allow us to represent numbers more exactly. So the IEEE 754 standard has
two floating-point numbers: single-precision (32-bit) and double-precision (64-bit) to allow us to make
this tradeoff.

Single Precision (32-Bit)
1 sign bit
8 exponent bits
23 mantissa bits
Bias of 127

float in C

Double Precision (64-Bit)
1 sign bit
11 exponent bits
52 mantissa bits
Bias of 1023

double in C

Converting to IEEE 754
The process of converting a decimal number into IEEE 754 is fairly simple, but there are a few gotchas
you should keep in mind. An example is shown below, using single precision (32-bits)

Convert -187.69 to binary.

Convert the whole number component to binary (ignore the sign). Take note of the number of bits
required to store the whole number component, and use only what you need to. This means the MSB
should be a 1!

187 = 128 + 32 + 16 + 8 + 2 + 1 = 1011 1011

Convert the fractional part to binary. Repeatedly multiply the number by 2, but only preserve the
fractional part. Because the whole number component took up 8 bits, we can stop after 23 - 8 + 1 = 16
operations.

0.69 * 2 = 1.38
0.38 * 2 = 0.76
0.76 * 2 = 1.52
0.52 * 2 = 1.04
0.04 * 2 = 0.08
0.08 * 2 = 0.16
0.16 * 2 = 0.32
0.32 * 2 = 0.64
0.64 * 2 = 1.28

0.28 * 2 = 0.56
0.56 * 2 = 1.12
0.12 * 2 = 0.24
0.24 * 2 = 0.48
0.48 * 2 = 0.96
0.96 * 2 = 1.92
0.92 * 2 = 1.84

Read the whole number of the resultant numbers down to get the fractional binary number

0.69 ≈ 0.1011000010100011

Combine this with the whole number we found above to get the entire binary representation

187.69 ≈ 1011 1011.1011 0000 1010 0011

Convert to scientific notation. Shift the binary point all the way to the front, and count the number of
moves. This will be the exponent.

1011 1011.1011 0000 1010 0011 = 1.011 1011 1011 0000 1010 0011 * 27

Convert this number to IEEE 754 representation. The sign bit should be 1 if the number is negative.
The exponent should be the number we got above, plus the bias (for single precision, this is 127). The
mantissa should be the fractional component of the scientific notation number we got earlier.

Sign: 1
Exponent: 7 + 127 = 134 = 1000 0110
Mantissa: 011 1011 1011 0000 1010 0011

Combine that representation to form the binary representation of the number.

S Exponent Mantissa
1 1000 0110 011 1011 1011 0000 1010 0011

So -187.69 in binary is 1100 0011 0011 1011 1011 0000 1010 0011

Converting from IEEE 754
This largely follows the same practice, but in reverse.

Convert 1100 0011 0011 1011 1011 0000 1010 0011 to decimal.

Split up the binary number into its components. We know the first bit is the sign bit, followed by the 8
bits for the exponent, followed by the 23 bits of the mantissa.

Sign: 1
Exponent: 1000 0110
Mantissa: 011 1011 1011 0000 1010 0011

Remove the bias from the exponent

1000 0110 - 0111 1111 = 0000 0111
134 - 127 = 7

Form the number into scientific notation using the below formula

(-1)sign * (1 + mantissa) * 2exponent

-11 * (1.011 1011 1011 0000 1010 0011) * 27

Shift the number to remove the exponent

(1.011 1011 1011 0000 1010 0011) * 27 = 1011 1011.1011 0000 1010 0011

Evaluate the bits at each position, and apply the sign bit

1011 1011.1011 0000 1010 0011

27 + 25 + 24 + 23 + 21 + 20 + 2-1 + 2-3 + 2-4 + 2-9 + 2-11 + 2-15 + 2-16

= -187.6899871826171875

Notice this is very very close, but not exactly the value we had.

Special Cases
In addition to the standard floating point numbers, there are a few different special cases of IEEE 754.

1. Normalized Numbers are just the numbers we saw above. Normalized numbers have an
exponent which is not 0 AND not 255 (basically, not all zeros, and not all 1s)

2. Denormalized Numbers have an exponent value of all zeros. The effective exponent is equal to
1 - bias. They allow us to represent +0, -0; they allow us to represent values very close to zero
by using a property called gradual underflow

3. Not A Number Values have exponent values of all 1s. Infinity is represented by a mantissa field
of all zeros (can be signed as well!). All other values are NaN, and usually indicate uninitialized
data.

Assembly
Before the invention of higher-level programming languages, programmers need to write code in
assembly. While there isn’t much use in this anymore, it can still be important to understand how
assembly works, and understand the assembly language generated by compilers.

Abridged History

Processor Year Number of
Transistors

Description

8086 1978 29,000 One of the first single-chip, 16bit microprocessors

i386 1985 275,000 Expanded to 32-bit architecture, first model to fully
support UNIX

Pentium 1993 3,100,000 Improved performance without many changes to
the instruction set

Pentium/MMX 1997 4,500,000 Add support for operations on vectors of integers

Pentium 4E 2004 125,000,000 Added support for hyperthreading, a means of
executing multiple programs at once

Core i7 Haswell 2013 1,400,000,000 Improved performance and increased capabilities,
specifically to do with 256 bit vectors

As technology progressed, it became possible to place successively more transistors into a smaller
package, allowing for greater performance. Additionally, new features were added to the x86
architecture to make it more efficient and computing common problems.

Machine-Level Abstractions
While assembly is closer to the hardware, the are still a number of important abstractions that are
important at this level:

1. The Instruction Set Architecture defines the possible operations a processor can perform, the
format, and the effect each will have

2. Memory Addresses in programs are virtual addresses and not representative of the “actual”
hardware address.

Producing Readable Assembly
Compilers will apply a lot of optimizations to make your code run more efficiently, but this can be very
hard for humans to understand.
➔ Use -Og to disable the optimizations to those that preserve the structure of the program
➔ Use -S to stop just before the assembler, outputting an assembly program
➔ Use -c to stop just before the linker (.s), producing an object file (.o)

Diassassemblers
To go the other way, and produce assembly from a compiled object file, we can use a disassembler, like
objdump, to translate the machine code into assembly.

To see this in action, let’s compile the following simple C program, using -O0 to remove compiler
optimizations, and -c to output the object file

#include <stdio.h>

int main() {

int side = 16;

int area = side * side;

int weight = 96;

int density = area / weight;

printf("density: %d", density);

};

The output of objdump -d density.o is shown below. Notice how instructions range from 1-15 bytes in
size.

0: f3 0f 1e fa endbr64
4: 55 push %rbp
5: 48 89 e5 mov %rsp,%rbp
8: 48 83 ec 10 sub $0x10,%rsp
c: c7 45 f0 10 00 00 00 movl $0x10,-0x10(%rbp)
13: 8b 45 f0 mov -0x10(%rbp),%eax
16: 0f af c0 imul %eax,%eax
19: 89 45 f4 mov %eax,-0xc(%rbp)
1c: c7 45 f8 60 00 00 00 movl $0x60,-0x8(%rbp)
23: 8b 45 f4 mov -0xc(%rbp),%eax
26: 99 cltd
27: f7 7d f8 idivl -0x8(%rbp)
2a: 89 45 fc mov %eax,-0x4(%rbp)
2d: 8b 45 fc mov -0x4(%rbp),%eax
30: 89 c6 mov %eax,%esi
32: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 39 <main+0x39>
39: b8 00 00 00 00 mov $0x0,%eax
3e: e8 00 00 00 00 callq 43 <main+0x43>
43: b8 00 00 00 00 mov $0x0,%eax
48: c9 leaveq
49: c3 retq

Registers
➔ There are 16 registers in total, each storing up

to 64-bit values
➔ We can store less in each register, and copy

smaller amounts if we choose (by using a
different register label for the same name)

➔ Used to hold temporary data
➔ Note that Assembly doesn’t really have the

concept of types for register values, so it makes
no distinction between different
unsigned/signed integers, or even pointers and
integers

Examples of register names. All of these labels
refer to the same register, but they allow us to
access the lower portions of the same 64 bit
register

%rax (64)
%eax (32)
%ax (16)
%al (8)

Here we are using “word” to represent 16-bits.
When processors became 32-bit, it allowed for
“double word.” 64 bit processors have the
concept of a “quad word”

Special Purpose Registers
In addition to the general purpose registers, there are a few registers that point to specific values that
may be interesting to us.

Name 32-bit
Label

16-bit
Label

8-bit
Label

Description

%rsp %esp %sp %spl Stack Pointer. Keeps track of the call stack.

%rbp %ebp %bp %bpl Base Pointer. Points to the bottom of the current function’s
stack frame. Local variables are usually referenced as an offset
from the base pointer.

%rip %eip %ip Instruction Pointer. Also known as the program counter,
tracks the address of the next instructions

%rflags %eflags %flags CPU flag. Some operations will occasionally set flags, such as
a warning about division by zero.

Note: In some special cases, %rsp and %rbp can serve as general purpose registers. This will happen
when the compiler decides that all local variables can be stored in registers, freeing up %rbp to be used

Calling Convention

Defines how functions on a particular OS and architecture interact. This allows functions from different
languages to interoperate, and let OS run code from different programming languages. Note that
assembly itself doesn’t have the concept of functions. Instead calling convention defines how compilers
will reason about functions to make them more interoperable.

Entry Sequence
In order to call a function (the callee), the caller function must perform a number of steps, known as the
entry sequence:

1. Copy the first 6 arguments into registers (%rdi, %rsi, %rdx, %rcx, %r8, %r9 respectively)
2. Store additional or large arguments on the stack frame, in increasing order (the 7th argument is

closer to %rbp)
3. Save any of the caller-saved registers (these are registers that are not preserved across function

calls)
4. Execute the callq assembly instruction to pass control to the callee

Exit Sequence
After a function is complete, a number of clean up steps should be performed so control can return
successfully to the caller:

1. The callee should place the return value into %rax
2. Restore the stack pointer to it’s value at the beginning of function execution with entry %rsp
3. Execute the retq to pass control flow back to the caller. This removes the top return address

from the stack and jumps to that address
4. The caller now cleans up argument registers, and restores caller-saved registers

Operand Specifiers

When executing an assembly instruction, there are a number of possible operands (think arguments)
you can call with it.

Immediate Values
These are numeric literals that can be passed
directly to instructions. They are designated
with a $

Imm in this context can mean

Form Operand Value

$Imm Imm

Register Values
By passing a register reference (designated
with a %), you are using the value of that
register.

Note that R[] refers to the value of the given
register.

Form Operand Value

%ra R[ra]

Memory Values
Use the value at a computed memory address
for the instruction, usually designated with
parentheses. Literal values without $ however
are absolute memory addresses!

Note that M[] refers to the value of the given
computed address

The scalar value (shown as s on the right) must
be either 1, 2, 4, 8

Form Operand Value

Imm M[Imm]

(%ra) M[R[ra]]

Imm(%ra) M[Imm + R[ra]]

(%ra,%ra) M[R[ra] + R[rb]]

Imm(%ra,%ra) M[Imm + R[ra] + R[rb]]

(,%ra,s) M[R[ra] * s]

Imm(,%ra,s) M[Imm + R[ra] * s]

(%ra,%rb,s) M[R[ra] + R[rb] * s]

Imm(%ra,%rb,s) M[Imm + R[ra] + R[rb] * s]

Examples

Given the following register and memory values, compute the result of the operand specifier given.

Memory

Address Value

0x100 0xFF

0x104 0x32

0x108 0x2A

0x208 0xFE

0x304 0x69

0x408 0x45

Register

Address Value

%rax 0x104

%rbx 0x345

%rcx 0x200

%rdx 0x100

Value Computation Result

$0x104 0x104

0x104 M[0x104] = 0x32

%rax R[%rax] = 0x104

(%rax) M[R[%rax]] = M[0x104] = 0x32

4(%rax) M[4 + R[%rax]] = M[4 + 0x104] = M[0x108] = 0x2A

(%rax,%rcx) M[R[%rax] + R[%rcx]] = M[0x104 + 0x200] = M[0x304] = 0x69

(%rcx,
%rax, 2)

M[R[%rcx] + R[%rax] * 2] = M[0x200 + 2 * 0x104] = M[0x408] = 0x45

264(%rcx,
%rdx, 1)

264 = 0x108
M[0x108 + R[%rcx] + R[%rdx] * 1] = M[0x108 + 0x200 + 0x100] =
M[0x408]

0x45

(,%rax, 2) M[R[%rax] * 2] = M[0x104 * 2] = M[0x208] = 0xFE

Move Instructions

Some of the most commonly used instructions, used to copy data from one place to another. Valid
moves are shown below; note howmemory→ memory is not possible on x86. Additionally note that
an immediate cannot be a destination.

Immediate→ Register,
Immediate→ Memory,
Register→ Memory,
Memory→ Register,
Register→ Register

Basic Move

These move instructions simply copy the data from the source to the destination without any
modifications.

Instruction Notes

movb <src>, <dest> Moves a single byte (8 bits) from the source to destination

movw <src>, <dest> Moves a word (16 bits) from the source to the destination

movl <src>, <dest> Moves a double word (32 bits) from the source to the destination

movq <src>, <dest> Moves a quad word (64 bits) from the source to the destination

movabsq <imm>, <reg> Typical move instructions only permit you to move immediates that
are able to represented in 32-bit signed integers. movabsq lets you
move a 64-bit immediate directly into a register.

Move Sizes

The specific move instruction to use is based on the sizes of your data. In general, your move should be
the minimum of the size of your source and your destination. For example, if you are moving from
memory to an 8-bit register, use movb.

Source Dest Instruction

$0x104
(16 bit immediate)

%rax
(64 bit register)

movw $0x104 %rax

%ax
(16 bit register)

$0x202
(16 bit immediate)

Illegal Operation! An immediate cannot be a
destination

(%r8)
(memory location)

%ebx
(32 bit register)

movl (%r8) %ebx

$0xEAEAFE85FE85EAEA
(64 bit immediate)

%rbx
(64 bit register)

movabsq $0xEAEAFE85FE85EAEA, %rbx
movabsq is needed here because other move
instructions can only have 32-bit immediates

(%rax)
(memory location)

0
(memory location)

Illegal Operation! You cannot move from memory
location to memory location in x86.

Extension Moves

In addition to basic moves, we can also choose to sign or zero extend the data as we copy it from a
source to destination. Extension moves must have register or memory location as their source, and a
register as their destination!

Zero Extension Move

Instruction Notes

movzbw <byte> <word> Moves the byte to a word, zero extending to fill the empty space

movzbl <byte> <long> Moves the byte to a double word (long), zero extending to fill the
empty space

movzwl <word> <double> Moves the word to a double word (long), zero extending to fill the
empty space

movzbq <byte> <quad> Moves the byte to a quad word, zero extending to fill the empty
space

movzwq <word> <quad> Moves the byte to a quad word, zero extending to fill the empty
space

Signed Extension Move

movsbw <byte> <word> Moves the byte to a word, sign extending to fill the empty space

movsbl <byte> <long> Moves the byte to a double word (long), sign extending to fill the
empty space

movswl <word> <double> Moves the word to a double word (long), sign extending to fill the
empty space

movsbq <byte> <quad> Moves the byte to a quad word, sign extending to fill the empty
space

movswq <word> <quad> Moves the byte to a quad word, sign extending to fill the empty
space

cltq Sign extends %eax to %rax. This is a compact encoding for a
common operation

Memory to Memory Moves

When doing memory to memory operations, it is necessary to use two instructions: one to move data
from the source to a register, and one to move the data from the register to the destination. As we have
seen previously, when numeric assignment happens between types, variables are either extended or
truncated. Here are a few examples of how different C assignment instructions translate into assembly.

First Instruction
The first instruction should move the source data into a register completely, performing extensions if
necessary.

1. If the source is the same size as the destination, then you can directly copy the data into a
register without performing an extension. For example, int = int should use movl

2. If the destination is smaller than the source (i.e. you are losing data), then copy the entire source
into the register, you will truncate in the second step. For example, char = int should use movl

3. If the destination is larger than the source, you will need to perform an extension. If the source
type is signed, perform a signed extension (using movs), and if the source type is unsigned,
perform a zero extension (using movz). For example, int = unsigned short should use movzwl
and int = short should use movswl

Second Instruction
The second instruction only needs to copy the data from the register into the destination address. You
should not perform any extension here, but you should perform truncation here. For example, int =
unsigned short should use movl, and char = int should use movb

For these examples, assume the address of the source a is held in %rsi and the destination address is
held in %rdi. Additionally use the 1st register (%rax %eax %ax %al) to hold data.

C Assignment Equivalent Assembly Notes

char a = 32;

short b = a;

movsbw (%rsi), %ax

movw %ax, (%rdi)
Signed extension here because char is a
signed type

unsigned char a = 32;

int b = a;

movzbl (%rsi), %eax

movl %eax, (%rdi)
Zero extension here because char is an
unsigned type

char a = 32;

unsigned int b = a;

movsbl (%rsi), %eax

movw %eax, (%rdi)
Even though b is unsigned, use a signed
extension because a is signed.

int a = 4249;

unsigned short b = a;

movl (%rsi), %eax

movw %ax, (%rdi)
Truncation here, but copy the entire int
into register

short b = -45;

unsigned short a = b

movw (%rsi), %ax

movw %ax, (%rdi)
No extension, direct copy, but data will
be misinterpreted

C Review
Covers topics discussed on March 26

Memory Manipulation Functions
These functions allow us to manipulate memory at a low level more easily. They are provided in the
string.h library

memcpy

void *memcpy (void *destination, const void *source, size_t num);

Copies a set number of bytes from the source buffer to the destination buffer. This is different from
strcpy because it ignores the NULL byte (\0).

#include <string.h>

#include <stdio.h>

int main() {

const char source[30] = "Hello World\0Extra String Pog!";

char dest[30];

char dest_b[30];

// Copy exactly 30 bytes

memcpy(dest, source, 30);

// Copy until the NULL byte

strcpy(dest_b, source);

for (int i = 0; i < 30; i++) {

// This will output Hello World\0Extra String Pog!

printf("dest: %c\n", dest[i]);

// This will output garbage beyond i = 10

printf("dest_b: %c\n", dest_b[i]);

}

}

memset

void *memset (void *ptr, int value, size_t num);

Fills a buffer with a specific value, often zero.

#include <stdint.h>

#include <string.h>

int main() {

unsigned int a = 0xFFFF0000;

memset(&a, 0x0000, sizeof(uint64_t)); // a is now 0x000000000

}

memcmp

int memcmp (const void * ptr1, const void * ptr2, size_t num);

Very similar to strcmp, except it does not stop copying upon reaching a NULL byte. Returns 0 if the
values of the buffers are equal. If the return value is negative, the first byte that does not match in both
memory blocks has a lower value in ptr1 than in ptr2 (if evaluated as unsigned char values). If the
return value is positive, the first byte that does not match in both memory blocks has a greater value in
ptr1 than in ptr2 (if evaluated as unsigned char values)

#include <string.h>

#include <stdio.h>

int main() {

const char a[30] = "Hello World\0Extra String Pog!";

const char b[30] = "Hello World\0Different Secret!";

int mem = memcmp(a, b, sizeof(a));

int str = strcmp(a, b, sizeof(a));

// Won't get printed

if (mem == 0) {

printf("memcmp says a == b\n");

}

// Will get printed

if (str == 0) {

printf("strcmp says a == b\n");

}

}

Processes
We can use the fork() system call to duplicate this process at the current execution point. The child
process will have initially identical, but duplicated program state.

int fork();

The return value of the fork call indicates the status thereof. Negative values indicate that forking was
unsuccessful, Zero is returned to the new process, and Positive values are returned to the parent
process.

#include <stdio.h>

#include <unistd.h>

int main() {

int result = fork();

printf("fork = %d", result);

}

