
CPSC 3120 Final Exam Study Guide
Brendan McGuire (bmmcgui@clemson.edu) • Patrick Smathers (psmathe@clemson.edu)

Greedy Algorithms 2
Fractional Knapsack Problem 2
Huffman Coding 3
Task Scheduling 3
Thinking About Greedy Approaches 3

Divide And Conquer 4
Recurrence Equation & The Master Theorem 4
Merge Sort 4
Closest Pair of Points 5

Dynamic Programming 6
Matrix Chain Multiplication 7

Review of Matrix Multiplication 7
Longest Common Subsequence 8
Task Scheduling 8

Graphs & Graph Algorithms 9
Representations 9
Shortest Path Problems 9
Minimum Spanning Tree 9

Kruskalʼs Algorithm for MST 9
Classes of Complexity 10

P vs. NP 10
NP-Complete 10
NP-Hard 10

mailto:bmmcgui@clemson.edu
mailto:psmathe@clemson.edu

Greedy Algorithms
In a greedy algorithm, we are faced with making decisions to optimize an objective function. In a
greedy approach, we select the locally optimal choice. The challenge with greedy approaches is
proving that a locally optimal choice will lead to a globally optimal solution.

Consider the examples below for situations where a greedy algorithm is the most optimal solution to
the problem.

Fractional Knapsack Problem
In the fractional knapsack problem, we are given a set of items withweight and benefit. Wemust
maximize the total benefit given a specific weight limit. We can take fractions of each item, getting the
corresponding weight for the percentage we took. For the fractional knapsack problem, we know that
greedily selecting items with the highest benefit per unit weight has been shown to produce an
optimal solution.

Example
Your candy bag can hold up to 10 kg of candy. You go to the store and see the following candies
available for sale with your rated level of tastiness. Maximize the total tastiness value of your bag,
assuming you can take fractional amounts of each candy.

Candy Weight Available Total Tastiness

M&Ms 2 kg 10

Acorns 10 kg 3

Paper 40 kg 1

Twix 1kg 12

First, we can compute the tastiness per unit weight of each candy category and sort from highest to
lowest unit tastiness.

Candy Weight Available Total Tastiness Unit Tastiness

Twix 1kg 12 tastiness per kg12 / 1 = 12

M&Ms 2 kg 10 tastiness per kg10 / 2 = 5

Acorns 10 kg 3 tastiness per kg3 / 10 = 0. 3

Paper 40 kg 1 tastiness per kg1 / 40 = 0. 025

From this, we can fill our bag with the candy that has the highest tastiness per unit weight until our
bag fills completely.

Step Current Bag Action New Bag

0 W = 0, T = 0 Take 1 kg of Twix W = 1, T = 0 + 12 * 1 = 12

1 W = 1, T = 12 Take 2kg of M&Ms W = 3, T = 12 + (2 * 5) = 22

2 W = 3, T = 22 Take 7 kg of Acorns W = 10, T = 22 + (0.3 * 7) = 24.1

Therefore, the optimal way of filling our bag is taking 1 kg of Twix, 2 kg of M&Ms, and 7 kg of Acorns.

Huffman Coding

Task Scheduling
In a task scheduling problem, we have N tasks, each with a start time Siand end time Fi where a
machine must complete each task. Wemust minimize the number of machines needed to complete all
tasks in their allotted time. A greedy approach to scheduling has been shown to be optimal.

Thinking About Greedy Approaches
The difficulty of greedy algorithms to problems is not their implementation, as they are usually fairly
straightforward to produce. Instead, the challenge focuses on showing that a greedy approach is an
optimal solution.

Divide And Conquer
This technique divides a particular computing problem into one or more subproblems, each smaller. It
recursively solves each problem before “merging” or “marrying” the subproblem solutions to the next
level upʼs solutions. Once all the subproblems are solved andmerged upwards, you end with a
solution to the original problem. A good example of a divide and conquer algorithm is Merge Sort,
which will be described below.

Recurrence Equation & The Master Theorem
The recurrence equation shows the complexity of a recursive algorithm based on the given input.

a - Howmany subproblems are we creating?
b - What is the size of each problem?
f(n) - The cost of additional steps

The Master Theorem gives us a way to get asymptotic analysis based on three if-then conditions:

1. If there is a small constant , such that , then isϵ > 0 𝑓(𝑛) 𝑖𝑠 𝑂(𝑛
𝑙𝑜𝑔

𝑏
𝑎−ϵ

) 𝑇(𝑛) θ(𝑛
𝑙𝑜𝑔

𝑏
𝑎
)

2. If there is a constant , such that is , then is𝑘 ≥ 0 𝑓(𝑛) θ(𝑛
𝑙𝑜𝑔

𝑏
𝑎
𝑙𝑜𝑔𝑘𝑛) 𝑇(𝑛) θ(𝑛

𝑙𝑜𝑔
𝑏
𝑎
𝑙𝑜𝑔𝑘+1𝑛)

3. If there are small constants, , and , such that andϵ > 0 δ < 1 𝑓(𝑛) 𝑖𝑠 Ω(𝑛
𝑙𝑜𝑔

𝑏
𝑎 + ϵ

)

, for , then .𝑎𝑓(𝑛
𝑏) ≤ δ𝑓(𝑛) 𝑛 ≥ 𝑑 𝑇(𝑛) 𝑖𝑠 Θ(𝑓(𝑛))

Themain term to focus on is , which is found in all three equations. b and a are from the𝑛
𝑙𝑜𝑔

𝑏
𝑎

Recurrence Equation above. f(n) in the Master Theoremʼs rules are the cost of additional steps from the
Recurrent Equation

Merge Sort
Merge sort is one of the most efficient sorting algorithms and runs in O(N log N). It divides and
conquers the given array to sort by splitting it into le� and right halves recursively until there is just
one item in each array. Then it merges the sublists to get a fully sorted list.

Dividing will subdivide but keep the current order as it divides into smaller subproblems. When the
subproblems are at their smallest, you start merging the arrays, but each element is put into the
correct order during the merge

Closest Pair of Points

Dynamic Programming
We can utilize dynamic programming to solve problems easily divided into smaller dependent
subproblems. Fundamentally, dynamic programming is an optimization that can be applied to
recursive solutions.

This is different from Divide & Conquer becausewe use the previous solutions to aid us in solving the
larger scale problem. Consider the example of computing the n-th Fibonacci number. A simple
recursive solution to this problem has been shown below.

int fibonacci(int n) {

if (n == 0) {

return 0;

}

if (n == 1) {

return 1;

}

return fibonacci(n - 1) + fibonacci(n - 2);

};

See how the process of computing the ith Fibonacci number can be trivially completed if you know the
i-1th and i-2nd number (smaller subproblems). This is the perfect candidate for dynamic
programming.

int fibonacci(int n) {

std::vector<int> fib(n + 1);

fib[0] = 0;

fib[1] = 1;

for (int i = 2; i <= n; i++) {

fib[i] = fib[i - 1] + fib[i - 2];

}

return fib[n];

}

By utilizing this memoization (storing the result of smaller subproblems), we can dramatically reduce
the total runtime. For example, if we were computing all of the fibonacci from 1 to n, a dynamic
programming approach would allow us to compute it in O(N) time. In contrast, a more naive
implementation might take O(N2).

Matrix Chain Multiplication
Matrix Multiplication is associative, so we canmultiply a series of matrices in any order and get the
same result. However, the order in which youmultiply can take vastly different numbers of steps.
Compute the minimum number of steps required to multiply a series of matrices and what order you
must multiply them by to achieve that number of steps.

Review of Matrix Multiplication

Tomultiply twomatrices together, they must have the dimensions N x K and K x M. The resulting
matrix is in the form of N x M. The number of steps required to multiply those matrices is n x k x m.

For example, let A be a 2x10 matrix, B be a 10x50 matrix, and C be a 50x20 matrix. To compute
, we can either do or). However, these do not take the same𝐴 × 𝐵 × 𝐶 (𝐴 × 𝐵) × 𝐶 𝐴 × (𝐵 × 𝐶

amount of steps.

Form Steps Required

(𝐴 × 𝐵) × 𝐶 (means2 * 10 * 50 = 1000 steps (produces a 2x50 matrix)𝐴 × 𝐵)
means steps = 2000 steps𝐴𝐵 × 𝐶 2 * 50 * 20

3000 steps total

)𝐴 × (𝐵 × 𝐶) means 10 * 50 * 20 steps = 10,000 steps (produces at 10 * 20 matrix)(𝐵 × 𝐶
means 2 * 10 * 20 = 400 steps𝐴 × 𝐵𝐶

10,400 steps total

If we have to multiply how do we knowwhat the most efficient order of𝐴 × 𝐵 × 𝐶 × 𝐷
multiplication is?
➔ The naive solution is to try every possible combination, but the number of combinations

grows exponentially
➔ However, we can apply our dynamic programming principles to simplify the computation

process vastly. This is because the minimum number of steps to multiply is𝐴 × 𝐵 × 𝐶 × 𝐷
just the minimum number of steps to multiply 𝐴 × 𝐵 × 𝐶 × 𝐷

Longest Common Subsequence
Task Scheduling
The best way to do task scheduling is taking the greedy approach of assigning the first open slot found.

Given the following tasks and times, find the optimum scheduling to use the least number of
machines: (1,4), (3, 5), (4, 6), (5, 9)

Graphs & Graph Algorithms
Representations
Shortest Path Problems
Minimum Spanning Tree
Kruskalʼs Algorithm for MST

Classes of Complexity
Until now we have mostly considered the solutions to problems. But not all problems are created
equal. Classifying problems into their complexity can help us understand them and create
equivalences between them. Additionally, if we know a problem as difficult as another, we knowwe
wonʼt be able to devise an efficient solution.

P vs. NP
Typically, we define a problem as “efficiently solvable” if you can devise an algorithm that runs in O(nk)
time for some constant k > 0. This is known as polynomial time.

There are two aspects of the algorithm that we care about when classifying problems:

➔ Can we solve the problem in polynomial time?
➔ Can we verify a solution in polynomial time? If given an input and an output, can we verify that

the output satisfies the problem in polynomial time

NP-Complete
We use NP-Complete to refer to classes of problems that cannot be solved in polynomial time but can
be verified in polynomial time. All NP-Complete problems are connected, and you can transform
anyone into another, meaning if we ever find a polynomial solution to one, we have solved the entire
set.

NP-Hard
These problems are so dastardly that not only can they not be solved in polynomial time, they canʼt
even be verified (you canʼt check that an output is a correct solution for an input) polynomial time.

Most of the time, finding suboptimal solutions for these problems is the best approach. Techniques
like iterative refinement, genetic, and greedy approaches o�en present solutions close enough to
optimal and significantly reduced complexity.

