
CPSC 3220 Midterm Exam Study Guide
Brendan McGuire (bmmcgui@clemson.edu) • Patrick Smathers (psmathe@clemson.edu)

Disclaimer: while I make every attempt to be as accurate as possible, I am a student like you. If you notice anything
incorrect or misleading in this document, please let me know and I can correct it!

Good luck today!❤️

Operating Systems 3
Kernel/User Space & Microkernels 3
Processes & Threads 5

Virtual Memory 5
Interprocess Communication (IPC) 5

Messaging Passing 5
Named Pipes 6
Networks 6
Shared Memory 7
Signals 7

Creating New Processes 8
Fork 8
Exec 8

Vector Arguments (execv, execvp, execve, execvpe) 8
Variadic Arguments (execl, execlp, execle) 8
PATH Searching (execvp, execlp, execvpe) 9
Environment Variables (execle, execvpe) 9

Threads 10
Kernel Threads 10
User Threads 10
Thread Safety and Coordination 10

Race Conditions 10
Synchronization Primitives 11

Mutex 11
RW Lock 11
Binary Semaphore 11
Counting Semaphore 11
Condition Variable 11

Reentrance 11
Amdahl’s Law 12

Scheduling 13
Cooperative Scheduling 13
Preemptive Scheduling 14
Scheduling Discipline 14

First Come, First Served (FIFO) – Cooperative 14

mailto:bmmcgui@clemson.edu
mailto:psmathe@clemson.edu

Priority Queue – Cooperative 14
Shortest Job First (SJF) – Preemptive 14
Proportional Fair Scheduling 14

Predicting Task Length with Exponential Weighted Moving Average 15
Long Term, Medium Term, and Short Term Scheduling 16
CPU Affinity 16
Multilevel Feedback Queuing 16
Real Time Operating Systems 17

Soft 17
Firm 17
Hard 17
RTOS Scheduling Disciplines 17

Earliest Deadline First 17
Least Slack 17
Rate Monotonic 17

Context Switching 18
Context Switches 18

System Calls 18
Library Call 18
Kernel Initiated Traps 18
Interrupt 18

Related Topics 20
Shims 20

Operating Systems
An operating system is one of the lowest levels of code that runs on amachine. It directly interfaces with hardware,
manages the system’s resources, and protects the system from the code that runs above it.

The operating system provides a layer of abstraction around the hardware. We don’t want to have to write our
program to be able to account for every possible combination of hardware our users run it on. We use the operating
system to provide a common interface to interact with that hardware.

Kernel/User Space & Microkernels
The core of the operating system is the kernel, which manages the system’s resources. Code that runs in the kernel has
ultimate access to the hardware. The kernel creates its own abstractions to interact with the hardware in a more
protected way.

Kernel Space User Space

- Utilized by kernel only
- Access to entire memory
- Unrestricted access to hardware

- Runs user programs
- Separate virtualized memory
- Access to hardware mediated through abstractions

managed in kernel space

Microkernel – Moves as much to user space as possible
➔ Kernel usually provides just memory management/virtualization, interprocess communication, and thread

management
➔ To interact with other operating system functions (device drivers, file system, etc) user programs use IPC to

other user space programs
➔ Source code of kernel often smaller
➔ Performance often worse (due to excess messaging passing)

Monolithic Kernel – The entire operating system happens in kernel space
➔ Kernel provides primitives (system calls) to interact with all OS abstractions (process management, memory

management, file system, I/O)
➔ Device drivers are kernel modules
➔ Source code significantly bigger thanmicrokernel
➔ Performance often better due to tighter integration

Which of the following statements about microkernels are true?

Amicrokernel probably has less code than the Linux kernel.
This is correct. Because more of the operating system’s features are handled in user space, less code needs to be in
the microkernel

Microkernels are usually more stable (harder to crash) thanmonolithic kernels.
This is correct. Not only is there less to go wrong, but because microkernels are more split up thanmonolithic
systems, they can bemore fault resistant. For example, in a monolithic kernel, a single kernel panic usually results in
your entire system crashing. However, if a user space process running a component crashes, it is significantly less
likely the entire systemwill crash

The Linux kernel is a microkernel.

Most desktop/laptop/server operating systems use a microkernel design.
This is incorrect. Most operating systems are based loosely on the linux kernel, which is a monolith kernel, the more
traditional implementation.

Interprocess communication is more important for microkernels thanmonolithic kernels.
This is correct. Because more functionality of the operating system occurs in user space, one of the primary
functions of the microkernel is to facilitate interprocess communication.

Microkernels are usually faster thanmonolithic kernels.
This is incorrect. Because of the overhead of interprocess communication, they tend to be slower.

A microkernel is easier to secure than amonolithic kernel.
This is correct. Because there is more isolation between the components of the kernel, compromising one
component does not necessarily compromise the entire system

Processes & Threads
To runmultiple instances of programs “at once”, the operating system creates an abstraction, processes. These
represent a running instance of a program, and each process is convinced that it has unfettered access to the system.
The isolation of a process gives it increased stability

A primary job of an operating system is managing these different processes. Process and threads enable parallelism
and concurrency, two distinct but related terms.

Parallelism – In a multi-core system, simultaneously executing several instructions at once by dividing the work
between your cores.

Concurrency – Time-sharing (scheduling) so that task execution is interleaved, quickly switching between tasks. Note
that we are never performing multiple tasks at the same time, instead we are switching very quickly between tasks

Virtual Memory
Each process is assigned virtual memory space by the operating system. From the
process’ perspective, they have unfettered access to the system’s memory. The
operating systemmanages this abstraction, and will movememory to swap (files on
disk) whenmemory usage exceeds systemmemory. Memory is organized into
different sections, as shown on the left. Note that there are often gaps between each
section to prevent overlap, especially with larger memory spaces in more modern
systems.

Stack – Grows towards the heap, contains all the
information about the caller when a function is called,
so that execution can correctly resume

Heap – The segment where dynamically allocated
memory is placed. Grows towards larger addresses

Data – Stores global and static variables, and string
and numeric literals. Usually divided into read-only
and read-write sections

Text – Stored near address zero, this contains all of the
executable instructions in the program

Interprocess Communication (IPC)
There are several different ways that processes can communicate, each with their own considerations.

Messaging Passing
One of the simpler ways of IPC is message passing, which allows you to transmit data between two active processes.

//Create a mailbox for this process

int msqidS = msgget(MAILBOX_NUMBER, 0600 | IPC_CREAT);

// get length bytes from the other end of the mailbox and write to result

result = msgrcv(msqidS, &cmbox, length, 1, 0);

//send response.

msgsnd(msqidC, &msgp, length, 0);

Named Pipes
A named pipe allows you to take advantage of standard file I/O functions like fgets when passing data between
processes. This allows you to use standardized functions to communicate.

// receive data

umask(0);

mkfifo(FIFO_FILE, 0666);

while (1) {

fp = fopen(FIFO_FILE, "r");

fgets(readbuf, 80, fp);

printf("Received string: %s\n", readbuf);

fclose(fp);

}

// write

fp = fopen(FIFO_FILE, "w")

fputs(argv[1], fp);

fclose(fp);

Networks
A similar but more elaborate means of communication happens through the use of network sockets. Just like message
passing, network sockets in C use the same FILE pointer in all standard functions, allowing you to make use of existing
file I/O code.

int sockfd, connfd, port, clilen;

struct sockaddr_in saddr, caddr;

char buffer[BUFLEN];

sockfd = socket(AF_INET, SOCK_STREAM, 0);

memset(&saddr, 0, sizeof(struct sockaddr_in));

port = PORTNUM;

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = INADDR_ANY;

saddr.sin_port = htons(port);

if (bind(sockfd,

(struct sockaddr*)&saddr,

sizeof(saddr)) < 0) {

perror("bind failed!");

exit(1);

}

listen(sockfd, QUEUE_LENGTH);

For more information about using network sockets to communicate, see the example provided by Dr. Sorber, or recall
your notes from CPSC 3600😤

Shared Memory
For applications where message passing can be cumbersome, sharing a block of memory between 2 processes may be
appropriate. However, a wise programmer should be cognizant of the additional performance costs that can be
associated with this, and where the implementation would be better served by two threads inside of the same
process, where memory is shared automatically for free.

char *sharedblock = (char*)mmap(NULL, BLOCKSIZE, PROT_READ|PROT_WRITE, MAP_ANON |

MAP_SHARED, -1, 0);

strcpy(sharedblock, "Hello World");

// Depending on whether the child or parent runs first, we should see the child print

// out "parent was here" or the parent print out "child was here"

if(fork() != 0) {

// In parent

printf("%s\n", sharedblock);

strcpy(sharedblock, "parent was here");

} else {

// In child

printf("%s\n", sharedblock);

strcpy(sharedblock, "child was here");

}

Signals
A means of communication between processes. This is a system call a user process canmake to interact with another
currently running process. In POSIX, kill is the syscall used for signaling. The operating system can also send signals to
your program to control it.

Common signals defined in POSIX

Signal Number Effect

SIGABRT 6 The SIGABRT signal is sent to a process to tell it to abort, usually self initiated.

SIGTERM 14 The SIGTERM signal is sent to a process to request its termination. Unlike the SIGKILL
signal, it can be caught and interpreted or ignored by the process. This allows the process
to perform nice termination releasing resources and saving state if appropriate

SIGKILL 9 The SIGKILL signal is sent to a process to cause it to terminate immediately (kill). In
contrast to SIGTERM and SIGINT, this signal cannot be caught or ignored, and the
receiving process cannot perform any clean-up upon receiving this signal.

SIGFPE 8 Sent by the kernel when the process mode has a Floating Point Exception (i.e. dividing by
zero). Floating point here is a misnomer since this covers all arithmetic errors, not just
floating point

Readmore about POSIX symbols: https://www.man7.org/linux/man-pages/man7/signal.7.html

https://www.man7.org/linux/man-pages/man7/signal.7.html

Creating New Processes
Fork
The fork operation copies the current process into an exact identical copy, and then continues execution in both
contexts. In the C standard library, the fork() function will return 0 in the child process and the child’s process ID in the
main process. This allows you to differentiate between the two processes.

Example: what would the following code output in Linux?

int main() {

int x = 2;

if (fork() != 0) {

x--;

wait(NULL);

printf("%d \n",x);

} else {

x -= 3;

if (fork() != 0) { wait(NULL); x++; }

printf("%d ",x);

}

}

Exec

Vector Arguments (execv, execvp, execve, execvpe)
The execv variants allow you to pass a vector (NULL terminated array) as the command line arguments. The execv(),
execvp(), and execvP() functions provide an array of pointers to null-terminated strings that represent the argument
list available to the new program. The first argument, by convention, should point to the file name associated with the
file being executed. The array of pointers must be terminated by a NULL pointer. See below for an example.

// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execv("./bin/executable.out", argv);

Variadic Arguments (execl, execlp, execle)
These variants allow you to pass command line arguments as arguments to the function. The const char *arg0 and
subsequent ellipses in the execl(), execlp(), and execle() functions can be thought of as arg0, arg1, ..., argn. Together
they describe a list of one or more pointers to null-terminated strings that represent the argument list available to the
executed program. The first argument, by convention, should point to the file name associated with the file being
executed. The list of arguments must be terminated by a NULL pointer. See below for an example.

execl("./bin/executable.out", "hello", "world");

PATH Searching (execvp, execlp, execvpe)
The functions execlp() and execvp() will duplicate the actions of the shell in searching for an executable file if the
specified file name does not contain a slash “/” character. For execlp() and execvp(), search path is the path specified
in the environment by “PATH” variable. See below for an example.
// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// fill in arguments here

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execvp("ls", argv);

Environment Variables (execle, execvpe)
Variants that include e allow you as the user to specify additional Environment Variables to the process as you run it.
See below for an example.

​​// Create a new environment variable array to specify environment variables .

char *envp[] = {"ENV=PRODUCTION", NULL};

// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// Fill in arguments here

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execvpe(program, argv, envp);

Note: execvpe is not defined as part of the standard, so you must #define _GNU_SOURCE to include the GNU extensions.

Threads
Inside of a process, smaller sequences of execution that can be paused and resumed are known as threads. These are
more lightweight than processes, as they don’t have their ownmemory. Instead, threads share all dynamically
allocated and non-thread-local global variables. For many situations, this can be advantageous.

Kernel Threads
These are components of the process which are managed by the kernel. The process will register threads (by using the
pthreads API), and the operating systemwill manage them.
➔ Threads managed by kernel
➔ Threads can be placed across multiple cores on the CPU, so parallelism is possible.
➔ Do not have their own resources except for stack, copy of registers, and thread-local storage
➔ Switching between threads much faster than switching between processes

User Threads
Threads can also be implemented in userspace libraries, where the kernel is not aware of them. Instead, the user
library will write their own scheduler to manage parallel execution
➔ Threads managed by user library
➔ Cannot usually take advantage of multiprocessor/multicore machines, because kernel not aware of them
➔ Extremely fast to switch, often times a context switch to kernel space not needed
➔ More control over scheduling than kernel threads

Example: Are kernel threads or user threads more likely to speed up a CPU-bound workload?

In a multi-core system, kernel threads will be more likely to speed up a CPU-bound workload. This is because a key
differentiating kernel thread feature is the ability to assign different threads to different processes.

For tasks that can be easily divided without much sharing between threads, this is especially true. Speedups from
parallel execution significantly diminish when the task requires data to be transferred between CPUs so that threads
can coordinate and synchronize.

Thread Safety and Coordination
The lack of total isolation between threads inside of a process is a bit of a sword without a hilt. The freedom to
properly share memory allows you to massively increase the speed of communication between threads, but must be
carefully handled, as the order of execution is not guaranteed.

Race Conditions
For example, consider the following simple example. A web server is handling requests from clients by routing them to
one of many different threads. It keeps track of the total number of requests in a global variable. When a client connects
to the server, a thread will read the global request count variable, increment it, and then store it into the server.

However, when a thread is interrupted in the middle of updating the count, the next thread will read the incorrect value,
increment it, and then update it. This will lead to us massively undercounting the number of requests made, because we
are incrementing on the same base value.

The way to fix this is to make the read, increment, and write operation atomic (unable to be interrupted). We can
achieve this one of several ways, depending on howwe need to coordinate.

Synchronization Primitives
Here each primitive is described conceptually. For more precise examples on implementations in the pthreads library,
see the pthread

Mutex
Amutex will protect a shared resource and ensure that only one thread has access to it at once. This is accomplished
by 2 functions, lock and unlock.

Lock will block execution in the calling thread until it can get access to the resource. In most threading libraries, this is
implemented intelligently enough that the thread is not scheduled until they can acquire the lock.

Unlock will release control of a resource that you have access to, and allow others to lock it. You can only unlock if you
have the lock in your thread.

RW Lock
In situations where reading is muchmore common than writing, a mutex can lead to unnecessary locking. For
example, consider sharing a cache value between all of your threads. Each threadmay need the cache value
consistently, but since it is updated only occasionally, it is wasteful to ensure that only 1 thread can read at a time.

A Readers-Writer lock solves this problem by allowing many simultaneous threads to hold reader locks OR a single
thread to hold thewriter lock. In this way, many readers can access the data concurrently, and writes are deferred until
all reads have been completed. Similarly, readers can guarantee that while they have the reader lock, the data will not
change.

Binary Semaphore
A binary semaphore is extremely similar to a mutex, except that it does not necessarily indicate exclusive ownership of
a resource. A simple integer value is associated with a semaphore, which represents the state of the synchronization.
In a binary semaphore, this value is restricted to either 0 or 1

The wait operation will block thread execution until the semaphore reads a specific value (usually 1). The post
operation will transition the state to that value.

Counting Semaphore
A counting semaphore extends the idea of a binary semaphore by allowing the internal value to accumulate many
values beyond just 0 and 1.

Condition Variable
By using a condition variable, we can put threads to sleep until specific conditions are met. When this occurs, there will
be a queue of threads that are dependent on that condition that can now execute. So a condition variable is composed
primarily of an execution queue. Calling wait() on the condition variable indicates that the system

Reentrance
One of the important concepts of concurrent execution is the idea of preemption. In a preempting scheduler, the
processor could stop execution of your program at any time, and your code needs to handle this.

An important consideration for functions in a multithreading context is the idea of reetrance. A function is reentrant if
it can be interrupted in the middle of execution, and have a new invocation begin before the previous invocation
completes. An important consideration for reentrance is the state that is shared between all function invocations.

Amdahl’s Law
A quick way to determine howmuch your computation can benefit from parallel execution. First, create an estimate p
of the portion of your program that can be computed in parallel. Then, an upper bound for the speedup you can attain
by running the process on N parallel nodes is shown below.

It’s important to remember that this is an upper bound, the maximum speedup factor you can expect from running
your computation in parallel. Synchronization costs (like waiting for shared resources) mean you will rarely get this
level of speedup from your program.

It is also important to note that increasing the number of parallel executions has diminishing returns. Since it is
impossible to parallelize some sections of your process, you cannot provide a speedup that exceeds that minimum
time.

Example: A computation takes 60 hours to complete on a single core, where 20% of the task must be performed in
sequence.

a) What is the minimum time this process would take if it were run on 10 cores?

So, if run on 10 cores, the computation will take 16.8 hours

b) Howmany cores are needed for a 2.5x speedup?

So, running this process on 4 cores will give you at most a 2.5x speedup.

Time for n cores based on single core time:

𝑇
𝑛

= 𝑇
1
(𝑆 + 𝑃

𝑛)

𝑇
𝑛
 =

𝑇
1

𝑠𝑝𝑒𝑒𝑑𝑢𝑝

Example: There is a task that takes 10 hours on a single core and 80% of the task can be done in parallel.

a) How long (best case) would it take if 10 cores are used?
𝑇

10
= 10(0. 2 + 0.8

10)

𝑇
10

= 2 + 0. 8

𝑇
10

= 2. 8 ℎ𝑜𝑢𝑟𝑠.

b) Howmany cores would be needed to get the runtime to 2 hours?
2 = 10(0. 2 + 0.8

𝑛)

2 = 2 + 8
𝑛

0 = 8
𝑛

0𝑛 = 8

𝑛 = 8
0

Not possible. The sequential work will always need 2 hours, so the execution time with parallelism

asymptotically approaches 2 hours

Scheduling
When we have several tasks to execute concurrently, we need to decide what tasks to run when. The operating system
scheduler manages this for processes, and kernel threads. Userspace thread libraries will often contain a scheduler to
manage concurrent execution.

Cooperative Scheduling
In cooperative scheduling, the scheduler picks a task and runs it until it yields control to another task. At this point, the
scheduler picks a different task and resumes its execution. How exactly the next task is chosen depends on the
scheduling discipline of the implementation.
➔ Easier to implement
➔ Single tasks can hog execution time by never yielding control back to the scheduler
➔ Often used onmicrocontrollers, or other situations where you can implicitly trust every task to behave

Preemptive Scheduling
In a preemptive scheduler, tasks can be interrupted in the middle of execution without yielding. This allows the
scheduler to have control over how execution proceeds. Typically preemptive scheduling divides time into a number
of quanta (a small unit of time, say 10 microseconds). The scheduler will run a task for one quantum, and then decide
what to do next. How exactly it decides how to switch is dependent on the scheduling discipline of the
implementation
➔ Preemption usually requires hardware (timer interrupt)
➔ Stops one task from starving out execution by never yielding

Scheduling Discipline
How exactly the scheduler decides what to execute next can vary from implementation, and is generally referred to as
the discipline of the scheduler. Different disciplines make different trade offs in task lead time and execution time.

Wait Time – The time fromwork becoming ready and the first point it begins execution
Response Time/Turnaround Time – The time fromwork becoming ready until it is completed

First Come, First Served (FIFO) – Cooperative
There is a queue of tasks to be performed. The scheduler will switch to the next task in the order when a previous task
yields.

Priority Queue – Cooperative
There is a priority queue of tasks to be performed, with each task being assigned a priority. Processes with lower
priority can have extremely long lead-times if higher priority tasks consistently preempt them.

Round Robin (RR) – Preemptive
The scheduler will switch processes every quantum andmove to the next process in the queue.

Shortest Job First (SJF) – Preemptive
The scheduler will estimate how long the task will take, and run the shortest one. This can lead to starvation if short
jobs consistently come in and preempt longer running tasks.

Proportional Fair Scheduling
Each task is assigned a priority (either given by the user or estimated like SJF). The higher priority tasks aremore likely,
but not guaranteed to be executed first.

Predicting Task Length with Exponential Weighted Moving Average
Previous scheduling disciplines have relied on an estimation of the length of the bursts as a scheduling consideration.
But those familiar with the halting problemwill know that accurately knowing this number is mathematically
impossible, so we use heuristics to estimate.

Instead, operating systems will make estimations about how long a task will burst for based on previous execution
time. This is often done using an Exponential Weighted Moving Average, which takes into account the most recent
execution time to converge on an estimate for the execution time. Note: this method is bad for tasks which have
inconsistent oscillations in burst time, as EWMA will constantly chase the old value up and down.

Where
Pn refers to the prediction at time n
Pn - 1 refers to the prediction average at the previous quantum (n-1)
α is a tuning value, usually on the order of (0, 1)
m is the previously measured actual execution time

Example: Consider an operating system scheduler that uses Shortest Job First and estimates task execution time by
Exponential Weighted Moving Average, with α = 0.3. Shown below are a list of tasks, the current estimation for
duration, and their previous execution times. Assuming that all tasks are ready to be executed, which task will the
scheduler pick to execute first?

Task Current Estimation Last Estimation Time New Estimation 𝑝
𝑛
 = α𝑝

𝑛−1
 + (1 − 𝑎)𝑚

0 2 12 𝑝
𝑛
 = (0. 3)(2) + (0. 7)(12) = 9

1 14 7 𝑝
𝑛
 = (0. 3)(14) + (0. 7)(7) = 9. 1

2 4 4 𝑝
𝑛
 = (0. 3)(4) + (0. 7)(4) = 4

So, shortest job first will select

Long Term, Medium Term, and Short Term Scheduling
In a kernel scheduler, each of these terms refer to the different points at time in which a processor must make a
decision.

Long Term Scheduler – Determines which tasks are to be admitted to the ready queue of tasks, also known as
Admission Control. The long term scheduler must make decisions to admit tasks in order to balance I/O Bound and
CPU Bound tasks. Schedulers in modern OSes (like Windows, Mac, Linux) don’t really say “No” to tasks often

CPU Bound Tasks: Execution is mostly dependant on the CPU, task is largely doing crunchy calculations
I/O Bound Tasks: Execution is mostly dependent on responses from I/O devices.

Medium Term Scheduler – Determines which tasks have their state loaded into main memory, and which ones are
swapped to disk.

Short Term Scheduler – Determines which tasks get run from quantum to quantum.

CPU Affinity
This is the means by which you can instruct the compiler to schedule a specific thread on only a specific set of cores. In
the Linux API, the function sched_getaffinity allows you to set a bitmask of the cores which you want to allow this
thread to run on.

Note: this is generally considered a bad idea. If you cannot guarantee that you know better than the kernel where to
schedule this thread, you should not use this thread.

Process vs. Global Scope
The Operating System scheduler can choose to either schedule each process in the system separately from the
process’ threads (process scope), or it can choose to schedule all threads in the system equally (global scope). Usually,
global scope is considered simpler to implement, but can incur higher switching costs due to needing to change out
the virtual memory of the process of the thread.

Multilevel Feedback Queuing

There can be different queues based on different
priorities. System tasks may need to be close to
real time and have their own queue and
scheduler, interactive processes do a lot of
waiting and little computation so they may have
their own queue, and batch processes that have a
lot of information to process can use their own
queue so as not to slow down the other processes
categories.

Something to look at here is that a process could
try and say they are one process to get a shorter
queue time or higher priority, so a scheduler may
need the ability to “demote” a process to a lower queue. Similarly, for some processes that could do well in another
queue, the scheduler might want to “promote” future jobs of that process to a higher queue, like a batch job that
behaves more like an interactive process.

Real Time Operating Systems

Soft
In a soft system, there is decreasing
utility to miss deadlines. It becomes
increasingly important to

Firm
In a firm system, we are trying to
minimize misses, and there is no utility
for missed tasks. Essentially there is no
point to completing a task past the
deadline

Hard
In a Hard Real Time Operating System, a
missed deadline is a total system failure.
Think brakes in your car which fail to fire at a specific time, or a failure of your battery management system in your
laptop.

RTOS Scheduling Disciplines
Just like non real-time scheduling, how exactly a real-time scheduler picks which tasks to execute in which quanta can
be an important aspect of ensuring it is doing everything correctly.

Earliest Deadline First
In each quanta, we pick the task which is due soonest. It has beenmathematically proven that if there is a possible
way to schedule all the tasks and have them complete, that this will find it.

Least Slack
Similar to Earliest Deadline First, this discipline will pick the task with the least slack (that is howmany quanta can be
spent not running this task before it becomes impossible to complete). Slack is calculated by subtracting the due date
from the duration.

Rate Monotonic
In situations where you have tasks that have repeated deadlines (i.e. you can complete this task once every 1ms, and
this one needs to be completed every 3ms). The priority of each task in a particular quanta is inversely proportional to
the duration of the cycle for that process. For example, a task which takes 1ms is higher priority than a task which
takes 3ms to complete.

Context Switching
An operating system stores all of the state of your process/thread so that it can be paused and resumed at will. All of
this information is stored in the Process Control Block or Thread Control Block, and enables the operating system to
execute multiple contexts concurrently.

Process Control Block – Contains all of the information needed to resume execution of a process at a later point. This
information includes:
➔ Stack Pointer
➔ Program Counter
➔ Register Values
➔ The status of the memory itself
➔ Anything the operating system needs to continue executing

The procedure by which the operating system handles executing multiple processes concurrently is known as
scheduling, which will be covered later.

Context Switches
These are all different ways your program can pause execution, so the CPU can handle something else, and each of
them represent something different.

System Calls
When a user programwants to interact with the kernel, it uses the standardized System Calls, usually a few hundred
different instructions to the kernel. Calling a system call will set the syscall number for the system call on a specific
register, and then release control to the kernel to handle it. Doing this usually requires a context switch.

Library Call
This is a context switch from the user program to a dynamically linked library, usually libc/libc++. These programs are
attached to the runtime, and provide a function interface. An example of a library call is malloc(). This involves a
context switch from your program to the library.

Kernel Initiated Traps
When a user program does an illegal operation (invalid memory access, division by zero, etc) the CPU’s error handling
functionality will automatically jump execution to the kernel to handle the error gracefully (usually by quitting your
program).

Interrupt
This is the process by which hardware devices update their state to the software. Possible interrupts can come from
network access, input devices, or disk/hard drives. When these devices send interrupts, execution is automatically
jumped to the kernel-defined Interrupt Service Register to handle the interrupt.

Usually, you canmask (disable) some interrupts for better performance in a critical hotpath of code. This obviously
comes at the expense of the responsiveness of the system.

Worked Example
Example: Which statements accurately describe the difference and similarities between a trap and a system call?
Select all that apply functionality

Traps are a switch from user mode to kernel mode
This is correct. A trap can occur for many different reasons, but they involve a switch between execution in kernel
space and user space.

When a process requests a privileged action from the kernel, we call that a system call.
This is correct. The POSIX standard defines a series of system calls that a process in user space can make to the
kernel. These system calls are requests to the kernel.

A system call is a type of trap.
This is correct. A system call is a type of trap, a switch from user to kernel mode

A trap is when control passes from the user process back to the kernel
This is correct. A trap refers to both the switch from user mode and the switch back to user mode

System calls are real, traps are imaginary.
This is incorrect. A system call is a type of trap

A trap could occur in response to a system call
This is correct. While this is not the only way a trap can occur, a system call will always result in a trap to handle
the request in the kernel.

A trap could occur in response to a hardware event.
This is correct. An example of this would be an illegal arithmetic operation, which would trigger a hardware event
leading to a trap.

All traps are system calls.
This is incorrect. Other types of traps include interrupts or library calls.

Related Topics

Shims
A shim is a program that allows you to add additional functionality to function calls without the ability to modify the
source code of the function calls. You call the function just as you would the normal function and in the shim, you call
the original function and add additional functionality. The shim should define the function in the samemanner as the
original function, including parameters and return type.

In order to use the shim’s functions in place of others, you need to use LD_PRELOAD={shim location} in the execution
command to run your program. This will load your shim library first and your defined function will be used in function
calls. In order to use the original function, you can use the dlsym function to get a function pointer to next occurrence
of that function name using RTLD_NEXT

Example shim

#define _GNU_SOURCE

#include <dlfcn.h>

#include <stdlib.h>

int rand(void) {

int (*original_rand)(void) = NULL;

original_rand = dlsym(RTLD_NEXT, "rand");

return original_rand() % 100;

}

