
CPSC 3220 Final Exam Study Guide
Brendan McGuire (bmmcgui@clemson.edu) • Patrick Smathers (psmathe@clemson.edu)

Disclaimer: While I attempt to be as accurate as possible, I am a student like you. If you notice anything incorrect or
misleading in this document, please let me know, and I can correct it!

Good Luck on the Final!❤

Operating Systems 5
Kernel/User Space & Microkernels 5

Worked Example (Quiz 2) 6
Processes & Threads 7

Virtual Memory 7
Interprocess Communication (IPC) 7

Messaging Passing 7
Named Pipes 8
Networks 8
Shared Memory 9
Signals 9

Creating New Processes 10
Fork 10

Worked Example (Quiz 2) 10
Exec 11

Vector Arguments (execv, execvp, execve, execvpe) 11
Variadic Arguments (execl, execlp, execle) 11
PATH Searching (execvp, execlp, execvpe) 11
Environment Variables (execle, execvpe) 11

Threads 13
Kernel Threads 13
User Threads 13
Thread Safety and Coordination 13

Race Conditions 13
Synchronization Primitives 14

Mutex 14
RW Lock 14
Binary Semaphore 14
Counting Semaphore 14
Condition Variable 14

Reentrance 14
Worked Example (Quiz 5) 15
Amdahlʼs Law 17

Scheduling 18
Cooperative Scheduling 18

mailto:bmmcgui@clemson.edu
mailto:psmathe@clemson.edu

Preemptive Scheduling 19
Scheduling Discipline 19

First Come, First Served (FIFO) – Cooperative 19
Priority Queue – Cooperative 19
Shortest Job First (SJF) – Preemptive 19
Proportional Fair Scheduling 20
Worked Example (Quiz 6) 20

Predicting Task Length with Exponential Weighted Moving Average 21
Long Term, Medium Term, and Short Term Scheduling 22
CPU Affinity 22
Multilevel Feedback Queuing 22
Real Time Operating Systems 23

So� 23
Firm 23
Hard 23
RTOS Scheduling Disciplines 23

Earliest Deadline First 23
Least Slack 23
Rate Monotonic 23

Context Switching 24
Context Switches 24

System Calls 24
Library Call 24
Kernel Initiated Traps 24
Interrupt 24

Worked Example (Quiz 1) 24

Memory 26
The Process of Assigning Memory 26
Virtual Memory 26
Memory Management Unit 26

TLB Shootdown 26
Segmentation 27

Worked Example (Quiz 7) 27
Segment Allocation Strategy 28

Paging 29
Page Table Flags 29
Multi-Level Page Tables 30
Worked Example (Quiz 8) 30
Worked Example (Quiz 9) 32
Worked Example (Quiz 10) 33
Page Replacement 34

Page Replacement Algorithms 34
Local vs. Global 34
First In, First Out 34
Not Recently Used 34
Second Chance 35
Least Recently Used 35

Copy-on-Write 35
Worked Example (Quiz 12) 35

Fragmentation 35
Allocators 36

Implicit Free List 36
Explicit Free List 36
Segregated Free List 37

Memory Mapped I/O 37

Disks 38
Anatomy of a Disk 38

Hard Drives 38
Boot Sectors 38
Scheduling Methods 38

FCFS - First Come First Serve 38
SSTF - Shortest Seek Time First 38
SCAN 38
C-SCAN (Circular Scan) 38
LOOK 38
C-LOOK (Circular Look) 39
Worked Example (Quiz 12) 39

File Systems 40
Historical Context 40
FAT File Systems 40

Boot Sector 40
File Allocation Table 40

Decoding FAT12 File Allocation Tables 40
Root Directory 40
Data Sectors 41

Unix FS 41
Boot Block 41
Superblock 41
INodes 41

Indirect Blocks 41
Berkeley Fast File System 43

Cylinder Groups 43

Fragments 43
Bigger Block Sizes 43

Log Structured File Systems 43
Log 43
Checkpoint Region 43

Worked Example (Quiz 13) 44
Disk Fragmentation 45

RAID 45
Striping 46
Mirroring 46
Parity 46
RAID Levels 46

RAID 0 46
RAID 1 46
RAID 2 46
RAID 3 46
RAID 4 46
RAID 5 47
RAID 6 47

Operating Systems
An operating system is one of the lowest levels of code that runs on amachine. It directly interfaces with hardware,
manages the systemʼs resources, and protects the system from the code that runs above it.

The operating system provides a layer of abstraction around the hardware. We donʼt want to have to write our
program to be able to account for every possible combination of hardware our users run it on. We use the operating
system to provide a common interface to interact with that hardware.

Kernel/User Space & Microkernels
The operating system's core is the kernel, which manages the systemʼs resources. Any code that runs in the kernel has
ultimate access to the hardware. The kernel creates its own abstractions to interact with the hardware in a more
protected way.

Kernel Space User Space

- Utilized by kernel only
- Access to entire memory
- Unrestricted access to hardware

- Runs user programs
- Separate virtualized memory
- Access to hardware mediated through abstractions

managed in kernel space

Microkernel – Moves as much to user space as possible
➔ Kernel usually provides just memory management/virtualization, interprocess communication, and thread

management
➔ To interact with other operating system functions (device drivers, file system, etc) user programs use IPC to

other user space programs
➔ Source code of kernel o�en smaller
➔ Performance o�en worse (due to excess messaging passing)

Monolithic Kernel – The entire operating system happens in kernel space
➔ Kernel provides primitives (system calls) to interact with all OS abstractions (process management, memory

management, file system, I/O)
➔ Device drivers are kernel modules
➔ Source code significantly bigger thanmicrokernel
➔ Performance o�en better due to tighter integration

Worked Example (Quiz 2)
Which of the following statements about microkernels are true?

Amicrokernel probably has less code than a Linux kernel.
This is correct. Because more of the operating systemʼs features are handled in user space, less code needs to be
in the microkernel

Microkernels are usually more stable (harder to crash) thanmonolithic kernels.
This is correct. Not only is there less to go wrong, but because microkernels are more split up thanmonolithic
systems, they can bemore fault resistant. For example, in a monolithic kernel, a single kernel panic usually
results in your entire system crashing. However, if a user space process running a component crashes, it is
significantly less likely the entire systemwill crash

The Linux kernel is a microkernel.

Most desktop/laptop/server operating systems use a microkernel design.
This is incorrect. Most operating systems are based loosely on the linux kernel, which is a monolith kernel, the
more traditional implementation.

Interprocess communication is more important for microkernels thanmonolithic kernels.
This is correct. Because more functionality of the operating system occurs in user space, one of the primary
functions of the microkernel is to facilitate interprocess communication.

Microkernels are usually faster thanmonolithic kernels.
This is incorrect. Because of the overhead of interprocess communication, they tend to be slower.

A microkernel is easier to secure than amonolithic kernel.
This is correct. Because there is more isolation between the components of the kernel, compromising one
component does not necessarily compromise the entire system

Processes & Threads
To runmultiple instances of programs “at once”, the operating system creates an abstraction, processes. These
represent a running instance of a program, and each process is convinced that it has unfettered access to the system.
The isolation of a process gives it increased stability

A primary job of an operating system is managing these different processes. Process and threads enable parallelism
and concurrency, two distinct but related terms.

Parallelism – In a multi-core system, simultaneously executing several instructions at once by dividing the work
between your cores.

Concurrency – Time-sharing (scheduling) so that task execution is interleaved, quickly switching between tasks. Note
that we are never performing multiple tasks at the same time, instead, we are switching very quickly between tasks

Virtual Memory
Each process is assigned virtual memory space by the operating system. From the
processʼ perspective, they have unfettered access to the systemʼs memory. The
operating systemmanages this abstraction and will movememory to swap (files on
disk) whenmemory usage exceeds systemmemory. Memory is organized into
different sections, as shown on the le�. Note that there are o�en gaps between each
section to prevent overlap, especially with larger memory spaces in more modern
systems.

Stack – Grows towards the heap, contains all the
information about the caller when a function is called
so that execution can correctly resume

Heap – The segment where dynamically allocated
memory is placed. Grows towards larger addresses

Data – Stores global and static variables, and string
and numeric literals. Usually divided into read-only
and read-write sections

Text – Stored near address zero, this contains all of the
executable instructions in the program

Interprocess Communication (IPC)
There are several different ways that processes can communicate, each with their own considerations.

Messaging Passing
One of the simpler ways of IPC is message passing, which allows you to transmit data between two active processes.

//Create a mailbox for this process

int msqidS = msgget(MAILBOX_NUMBER, 0600 | IPC_CREAT);

// get length bytes from the other end of the mailbox and write to result

result = msgrcv(msqidS, &cmbox, length, 1, 0);

//send the response.

msgsnd(msqidC, &msgp, length, 0);

Named Pipes
A named pipe allows you to take advantage of standard file I/O functions like fgets when passing data between
processes. This allows you to use standardized functions to communicate.

// receive data

umask(0);

mkfifo(FIFO_FILE, 0666);

while (1) {

fp = fopen(FIFO_FILE, "r");

fgets(readbuf, 80, fp);

printf("Received string: %s\n", readbuf);

fclose(fp);

}

// write

fp = fopen(FIFO_FILE, "w")

fputs(argv[1], fp);

fclose(fp);

Networks
A similar but more elaborate means of communication happens through the use of network sockets. Just like message
passing, network sockets in C use the same FILE pointer in all standard functions, allowing you to make use of existing
file I/O code.

int sockfd, connfd, port, clilen;

struct sockaddr_in saddr, caddr;

char buffer[BUFLEN];

sockfd = socket(AF_INET, SOCK_STREAM, 0);

memset(&saddr, 0, sizeof(struct sockaddr_in));

port = PORTNUM;

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = INADDR_ANY;

saddr.sin_port = htons(port);

if (bind(sockfd,

(struct sockaddr*)&saddr,

sizeof(saddr)) < 0) {

perror("bind failed!");

exit(1);

}

listen(sockfd, QUEUE_LENGTH);

For more information about using network sockets to communicate, see the example provided by Dr. Sorber, or recall
your notes from CPSC 3600😤

Shared Memory
For applications where message passing can be cumbersome, sharing a block of memory between 2 processes may be
appropriate. However, a wise programmer should be cognizant of the additional performance costs that can be
associated with this, and where the implementation would be better served by two threads inside of the same
process, where memory is shared automatically for free.

char *sharedblock = (char*)mmap(NULL, BLOCKSIZE, PROT_READ|PROT_WRITE, MAP_ANON |

MAP_SHARED, -1, 0);

strcpy(sharedblock, "Hello World");

// Depending on whether the child or parent runs first, we should see the child print

// out "parent was here" or the parent print out "child was here"

if(fork() != 0) {

// In parent

printf("%s\n", sharedblock);

strcpy(sharedblock, "parent was here");

} else {

// In child

printf("%s\n", sharedblock);

strcpy(sharedblock, "child was here");

}

Signals
A means of communication between processes. This is a system call a user process canmake to interact with another
currently running process. In POSIX, kill is the syscall used for signaling. The operating system can also send signals to
your program to control it.

Common signals defined in POSIX

Signal Number Effect

SIGABRT 6 The SIGABRT signal is sent to a process to tell it to abort, usually self initiated.

SIGTERM 14 The SIGTERM signal is sent to a process to request its termination. Unlike the SIGKILL
signal, it can be caught and interpreted or ignored by the process. This allows the process
to perform nice termination releasing resources and saving state if appropriate

SIGKILL 9 The SIGKILL signal is sent to a process to cause it to terminate immediately (kill). In
contrast to SIGTERM and SIGINT, this signal cannot be caught or ignored, and the
receiving process cannot perform any clean-up upon receiving this signal.

SIGFPE 8 Sent by the kernel when the process mode has a Floating Point Exception (i.e. dividing by
zero). Floating point here is a misnomer since this covers all arithmetic errors, not just
floating point

Readmore about POSIX symbols: https://www.man7.org/linux/man-pages/man7/signal.7.html

https://www.man7.org/linux/man-pages/man7/signal.7.html

Creating New Processes
Fork
The fork operation copies the current process into an exact identical copy, and then continues execution in both
contexts. In the C standard library, the fork() function will return 0 in the child process and the childʼs process ID in the
main process. This allows you to differentiate between the two processes.

Worked Example (Quiz 2)
Example: what would the following code output in Linux?

int main() {

int x = 2;

if (fork() != 0) {

x--;

wait(NULL);

printf("%d \n",x);

} else {

x -= 3;

if (fork() != 0) { wait(NULL); x++; }

printf("%d ",x);

}

}

This would output -1 0 1. Consider the following timeline:

Original Process X Forked Process X

int x = 2; 2 2

if (fork() != 0) { 2 if (fork() != 0) { 2

x -= 3; -1 x--; 1

if (fork() != 0) { wait(NULL); x++; } -1 wait(NULL); 1

Forked Process X Original Process -1 wait(NULL); 1

printf("%d ",x); -1 wait(NULL); -1 wait(NULL); 1

Process Ends x++; 0 wait(NULL); 1

printf("%d ",x); 0 wait(NULL); 1

Process Ends printf("%d \n",x); 1

Exec

Vector Arguments (execv, execvp, execve, execvpe)
The execv variants allow you to pass a vector (NULL terminated array) as the command line arguments. The execv(),
execvp(), and execvP() functions provide an array of pointers to null-terminated strings that represent the argument
list available to the new program. The first argument, by convention, should point to the file name associated with the
file being executed. The array of pointers must be terminated by a NULL pointer. See below for an example.

// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execv("./bin/executable.out", argv);

Variadic Arguments (execl, execlp, execle)
These variants allow you to pass command line arguments as arguments to the function. The const char *arg0 and
subsequent ellipses in the execl(), execlp(), and execle() functions can be thought of as arg0, arg1, ..., argn. Together
they describe a list of one or more pointers to null-terminated strings that represent the argument list available to the
executed program. The first argument, by convention, should point to the file name associated with the file being
executed. The list of arguments must be terminated by a NULL pointer. See below for an example.

execl("./bin/executable.out", "hello", "world");

PATH Searching (execvp, execlp, execvpe)
The functions execlp() and execvp() will duplicate the actions of the shell in searching for an executable file if the
specified file name does not contain a slash “/” character. For execlp() and execvp(), search path is the path specified
in the environment by “PATH” variable. See below for an example.
// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// fill in arguments here

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execvp("ls", argv);

Environment Variables (execle, execvpe)
Variants that include e allow you as the user to specify additional Environment Variables to the process as you run it.
See below for an example.

 // Create a new environment variable array to specify environment variables .

char *envp[] = {"ENV=PRODUCTION", NULL};

// Copy over the arguments, and then null terminate

char **argv = (char **)malloc(sizeof(char *) * (args_len + 1));

// Fill in arguments here

// The list of arguments must be null-terminated.

argv[args_len] = NULL;

execvpe(program, argv, envp);

Note: execvpe is not defined as part of the standard, so you must #define _GNU_SOURCE to include the GNU extensions.

Threads
Inside of a process, smaller sequences of execution that can be paused and resumed are known as threads. These are
more lightweight than processes, as they donʼt have their ownmemory. Instead, threads share all dynamically
allocated and non-thread-local global variables. For many situations, this can be advantageous.

Kernel Threads
These are components of the process which are managed by the kernel. The process will register threads (by using the
pthreads API), and the operating systemwill manage them.
➔ Threads managed by kernel
➔ Threads can be placed across multiple cores on the CPU, so parallelism is possible.
➔ Do not have their own resources except for stack, copy of registers, and thread-local storage
➔ Switching between threads much faster than switching between processes

User Threads
Threads can also be implemented in userspace libraries, where the kernel is not aware of them. Instead, the user
library will write their own scheduler to manage parallel execution
➔ Threads managed by user library
➔ Cannot usually take advantage of multiprocessor/multicore machines, because kernel not aware of them
➔ Extremely fast to switch, o�en times a context switch to kernel space not needed
➔ More control over scheduling than kernel threads

Example: Are kernel threads or user threads more likely to speed up a CPU-bound workload?

In a multi-core system, kernel threads will be more likely to speed up a CPU-bound workload. This is because a
key differentiating kernel thread feature is the ability to assign different threads to different processes.

For tasks that can be easily divided without much sharing between threads, this is especially true. Speedups
from parallel execution significantly diminish when the task requires data to be transferred between CPUs so
that threads can coordinate and synchronize.

Thread Safety and Coordination
The lack of total isolation between threads inside of a process is a bit of a sword without a hilt. The freedom to
properly share memory allows you to massively increase the speed of communication between threads, but must be
carefully handled, as the order of execution is not guaranteed.

Race Conditions
For example, consider the following simple example. A web server is handling requests from clients by routing them to
one of many different threads. It keeps track of the total number of requests in a global variable. When a client connects
to the server, a thread will read the global request count variable, increment it, and then store it into the server.

However, when a thread is interrupted in the middle of updating the count, the next thread will read the incorrect value,
increment it, and then update it. This will lead to us massively undercounting the number of requests made, because we
are incrementing on the same base value.

The way to fix this is to make the read, increment, and write operation atomic (unable to be interrupted). We can
achieve this one of several ways, depending on howwe need to coordinate.

Synchronization Primitives
Here each primitive is described conceptually. For more precise examples on implementations in the pthreads library,
see the pthread

Mutex
Amutex will protect a shared resource and ensure that only one thread has access to it at once. This is accomplished
by 2 functions, lock and unlock.

Lock will block execution in the calling thread until it can get access to the resource. In most threading libraries, this is
implemented intelligently enough that the thread is not scheduled until they can acquire the lock.

Unlock will release control of a resource that you have access to, and allow others to lock it. You can only unlock if you
have the lock in your thread.

RW Lock
In situations where reading is muchmore common than writing, a mutex can lead to unnecessary locking. For
example, consider sharing a cache value between all of your threads. Each threadmay need the cache value
consistently, but since it is updated only occasionally, it is wasteful to ensure that only 1 thread can read at a time.

A Readers-Writer lock solves this problem by allowing many simultaneous threads to hold reader locks OR a single
thread to hold thewriter lock. In this way, many readers can access the data concurrently, and writes are deferred until
all reads have been completed. Similarly, readers can guarantee that while they have the reader lock, the data will not
change.

Binary Semaphore
A binary semaphore is extremely similar to a mutex, except that it does not necessarily indicate exclusive ownership of
a resource. A simple integer value is associated with a semaphore, which represents the state of the synchronization.
In a binary semaphore, this value is restricted to either 0 or 1

The wait operation will block thread execution until the semaphore reads a specific value (usually 1). The post
operation will transition the state to that value.

Counting Semaphore
A counting semaphore extends the idea of a binary semaphore by allowing the internal value to accumulate many
values beyond just 0 and 1.

Condition Variable
By using a condition variable, we can put threads to sleep until specific conditions are met. When this occurs, there will
be a queue of threads that are dependent on that condition that can now execute. So a condition variable is composed
primarily of an execution queue. Calling wait() on the condition variable indicates that the system

Reentrance
One of the important concepts of concurrent execution is the idea of preemption. In a preempting scheduler, the
processor could stop execution of your program at any time, and your code needs to handle this.

https://docs.google.com/document/d/1TQT2ZZZb7g8J1zCHUhIATj9myOM7ONy0V4IKG3BaiVE/edit#heading=h.bbyjcvz03e59

An important consideration for functions in a multithreading context is the idea of reetrance. A function is reentrant if
it can be interrupted in the middle of execution, and have a new invocation begin before the previous invocation
completes. An important consideration for reentrance is the state that is shared between all function invocations.

Worked Example (Quiz 5)
I amwriting a programwith multiple threads that all access a shared database. If 99% of my threads'
interactions with the database involve reading (1% of the time we're updating information),which of the
following statements are true?

Since we're mostly reading, we don't need synchronization.
Because there are occasional writes, we need some level synchronization to ensure that multiple writes do not
happen in parallel in such a way to destroy data.

Using a reader/writer lock to protect the database would be less efficient than amutex lock.
This is incorrect.

Using a mutex lock to protect the database will not be sufficient to ensure correct operation.
Using a mutex would be perfectly fine, it would just be incredibly slow

Using a reader/writer lock would bemore efficient than using a mutex.
Because the vast majority of operations are reads, it does not make sense to allow only one reader at a time (like
the mutex). Instead using a RW lock would allowmultiple concurrent readers while they are no writers. When a
writer requests the writer lock, it would block until all readers were finished, grant the writer lock, and then
prevent readers from reading until the writer completes its work.

Using a mutex lock to protect the database, will result in functionally correct operation.
Allowing only one thread to access the database at a time would result in correct operation, it would just be
needlessly slow.

Using a reader/writer lock will have roughly the same efficiency as a mutex lock.
This is incorrect, see above.

A reader/writer lock cannot provide adequate protection for this database.
This is incorrect. Because the RW lock allows only one writer at a time and ensures that there are no readers
while there is a writer and that writers write sequentially.

Consider the following pseudocode. What kind of semaphore is this?

semaphore_init(s1, 1); //initialize semaphore s1 to a value of 1 at startup.
Thread1 () {

semaphore_wait(s1);
count++;
semaphore_post(s1);

}

Thread2 () {
semaphore_wait(s1);
count--;
semaphore_post(s1);

}

This is a binary semaphore, because the only values the semaphore can contain is 0 or 1.

Consider the following pseudocode. Which of the following are possible outcomes of this program?

int count = 0;
Thread1 () {

semaphore_wait(s1);
semaphore_wait(s1);
count=count+2;
semaphore_post(s1);

}

Thread2 () {
semaphore_wait(s1);
count=count-1;
semaphore_post(s1);
semaphore_post(s1);

}

main() {
semaphore_init(s1, 0); //initialize semaphore s1 to a value of 0 at startup.
start(Thread1);
start(Thread2);
semaphore_post(s1);
join(Thread1);
join(Thread2);
print(count);

}

The behavior of this program is dependant on which thread the scheduler designates to run first. Both threads
will immediately start, and then suspend due to the semaphore containing a value of 0. The main thread will
then run, posting a value of 1. This will cause either thread 1 or thread 2 to run

If thread 1 runs first
Thread 1 will wait (via the second semaphore_wait call), causing all threads to be waiting for the semaphore,
which will never increase in value.

If thread 2 runs first
The count will be reduced to -1, and then the thread will post the semaphore, causing thread 1 to run (and
ending thread 1). This will increase count back to 1, and then post, ending thread 1. Now that both threads have
finished executing, the print statement in main will print out the value of count, 1

Amdahlʼs Law
A quick way to determine howmuch your computation can benefit from parallel execution. First, create an estimate p
of the portion of your program that can be computed in parallel. Then, an upper bound for the speedup you can attain
by running the process on N parallel nodes is shown below.

Itʼs important to remember that this is an upper bound, the maximum speedup factor you can expect from running
your computation in parallel. Synchronization costs (like waiting for shared resources) mean you will rarely get this
level of speedup from your program.

It is also important to note that increasing the number of parallel executions has diminishing returns. Since it is
impossible to parallelize some sections of your process, you cannot provide a speedup that exceeds that minimum
time

Example: A computation takes 60 hours to complete on a single core, where 20% of the task must be performed
in sequence.

a) What is theminimum time this process would take if it were run on 10 cores?

So, if run on 10 cores, the computation will take 16.8 hours

b) Howmany cores are needed for a 2.5x speedup?

So, running this process on 4 cores will give you at most a 2.5x speedup.

Time for n cores based on single core time:

𝑇
𝑛

= 𝑇
1
(𝑆 + 𝑃

𝑛)

𝑇
𝑛
 =

𝑇
1

𝑠𝑝𝑒𝑒𝑑𝑢𝑝

Example: There is a task that takes 10 hours on a single core and 80% of the task can be done in parallel.

a) How long (best case) would it take if 10 cores are used?
𝑇

10
= 10(0. 2 + 0.8

10)

𝑇
10

= 2 + 0. 8

𝑇
10

= 2. 8 ℎ𝑜𝑢𝑟𝑠.

b) Howmany cores would be needed to get the runtime to 2 hours?
2 = 10(0. 2 + 0.8

𝑛)

2 = 2 + 8
𝑛

0 = 8
𝑛

0𝑛 = 8

𝑛 = 8
0

Not possible. The sequential work will always need 2 hours, so the execution time with parallelism
asymptotically approaches 2 hours

Scheduling
When we have several tasks to execute concurrently, we need to decide what tasks to run when. The operating system
scheduler manages this for processes, and kernel threads. Userspace thread libraries will o�en contain a scheduler to
manage concurrent execution.

Cooperative Scheduling
In cooperative scheduling, the scheduler picks a task and runs it until it yields control to another task. At this point, the
scheduler picks a different task and resumes its execution. How exactly the next task is chosen depends on the
scheduling discipline of the implementation.
➔ Easier to implement
➔ Single tasks can hog execution time by never yielding control back to the scheduler
➔ O�en used onmicrocontrollers, or other situations where you can implicitly trust every task to behave

Preemptive Scheduling
In a preemptive scheduler, tasks can be interrupted in the middle of execution without yielding. This allows the
scheduler to have control over how execution proceeds. Typically preemptive scheduling divides time into a number
of quanta (a small unit of time, say 10 microseconds). The scheduler will run a task for one quantum, and then decide
what to do next. How exactly it decides how to switch is dependent on the scheduling discipline of the
implementation
➔ Preemption usually requires hardware (timer interrupt)
➔ Stops one task from starving out execution by never yielding

Scheduling Discipline
How exactly the scheduler decides what to execute next can vary from implementation, and is generally referred to as
the discipline of the scheduler. Different disciplines make different trade offs in task lead time and execution time.

Wait Time – The time fromwork becoming ready and the first point it begins execution
Response Time/Turnaround Time – The time fromwork becoming ready until it is completed

First Come, First Served (FIFO) – Cooperative
There is a queue of tasks to be performed. The scheduler will switch to the next task in the order when a previous task
yields.

Priority Queue – Cooperative
There is a priority queue of tasks to be performed, with each task being assigned a priority. Processes with lower
priority can have extremely long lead-times if higher priority tasks consistently preempt them.

Round Robin (RR) – Preemptive
The scheduler will switch processes every quantum andmove to the next process in the queue.

Shortest Job First (SJF) – Preemptive
The scheduler will estimate how long the task will take, and run the shortest one. This can lead to starvation if short
jobs consistently come in and preempt longer running tasks.

Proportional Fair Scheduling
Each task is assigned a priority (either given by the user or estimated like SJF). The higher priority tasks aremore likely,
but not guaranteed to be executed first.

Worked Example (Quiz 6)
Consider the following set of CPU bursts.

Process Quantum Arrived/Issued Burst Length (# of quanta)
P1 0 3
P2 1 4
P3 2 2
P4 3 1

For all of the following questions, if you ever run into a tie (where two bursts could be selected) use the
lower-numbered process. So, in a tie between P2 and P4, you would select P2.

1) If I schedule these bursts with preemptive SJF, in what order will they complete?

Consider the following timeline. When a process completes, that column is bolded. Remember, in a
preemptive context, we ca

Time 0 1 2 3 4 5 6 7 8 9

Process P1 P1 P1 P4 P3 P3 P2 P2 P2 P2

So, the processes will complete the following order: P1, P4, P3, P2

2) Again, with preemptive SJF, what is the wait time (in quanta) of P3?

Wait time is the time fromwhen the work arrives until it begins execution. P3 arrives at t=2, and begins
work at t=4, so the wait time is 2 quanta

3) If I switch to cooperative SJF what is the wait time (in quanta) of P3?

Consider the following timeline. When a process completes, that column is bolded. Interesting the
cooperative SJF execution timeline is identical to the preemptive timeline shown above

Time 0 1 2 3 4 5 6 7 8 9

Process P1 P1 P1 P4 P3 P3 P2 P2 P2 P2

Just as above, P3 arrives at t=2, and begins work at t=4, so the wait time is 2 quanta

Predicting Task Length with Exponential Weighted Moving Average
Previous scheduling disciplines have relied on an estimation of the length of the bursts as a scheduling consideration.
But those familiar with the halting problemwill know that accurately knowing this number is mathematically
impossible, so we use heuristics to estimate.

Instead, operating systems will make estimations about how long a task will burst for based on previous execution
time. This is o�en done using an Exponential Weighted Moving Average, which takes into account the most recent
execution time to converge on an estimate for the execution time. Note: this method is bad for tasks which have
inconsistent oscillations in burst time, as EWMA will constantly chase the old value up and down.

Where
Pn refers to the prediction at time n
Pn - 1 refers to the prediction average at the previous quantum (n-1)
α is a tuning value, usually on the order of (0, 1)
m is the previously measured actual execution time

Example: Consider an operating system scheduler that uses Shortest Job First and estimates task execution time
by Exponential Weighted Moving Average, with α = 0.3. Shown below are a list of tasks, the current estimation for
duration, and their previous execution times. Assuming that all tasks are ready to be executed, which task will the
scheduler pick to execute first?

Task Current Estimation Last Estimation Time New Estimation 𝑝
𝑛
 = α𝑝

𝑛−1
 + (1 − 𝑎)𝑚

0 2 12 𝑝
𝑛
 = (0. 3)(2) + (0. 7)(12) = 9

1 14 7 𝑝
𝑛
 = (0. 3)(14) + (0. 7)(7) = 9. 1

2 4 4 𝑝
𝑛
 = (0. 3)(4) + (0. 7)(4) = 4

Long Term, Medium Term, and Short Term Scheduling
In a kernel scheduler, each of these terms refer to the different points at time in which a processor must make a
decision.

Long Term Scheduler – Determines which tasks are to be admitted to the ready queue of tasks, also known as
Admission Control. The long term scheduler must make decisions to admit tasks in order to balance I/O Bound and
CPU Bound tasks. Schedulers in modern OSes (like Windows, Mac, Linux) donʼt really say “No” to tasks o�en

CPU Bound Tasks: Execution is mostly dependant on the CPU, task is largely doing crunchy calculations
I/O Bound Tasks: Execution is mostly dependent on responses from I/O devices.

Medium Term Scheduler – Determines which tasks have their state loaded into main memory, and which ones are
swapped to disk.

Short Term Scheduler – Determines which tasks get run from quantum to quantum.

CPU Affinity
This is the means by which you can instruct the compiler to schedule a specific thread on only a specific set of cores. In
the Linux API, the function sched_getaffinity allows you to set a bitmask of the cores which you want to allow this
thread to run on.

Note: this is generally considered a bad idea. If you cannot guarantee that you know better than the kernel where to
schedule this thread, you should not use this thread.

Process vs. Global Scope
The Operating System scheduler can choose to either schedule each process in the system separately from the
processʼ threads (process scope), or it can choose to schedule all threads in the system equally (global scope). Usually,
global scope is considered simpler to implement, but can incur higher switching costs due to needing to change out
the virtual memory of the process of the thread.

Multilevel Feedback Queuing

There can be different queues based on different
priorities. System tasks may need to be close to
real time and have their own queue and
scheduler, interactive processes do a lot of
waiting and little computation so they may have
their own queue, and batch processes that have a
lot of information to process can use their own
queue so as not to slow down the other processes
categories.

Something to look at here is that a process could
try and say they are one process to get a shorter
queue time or higher priority, so a scheduler may
need the ability to “demote” a process to a lower queue. Similarly, for some processes that could do well in another
queue, the scheduler might want to “promote” future jobs of that process to a higher queue, like a batch job that
behaves more like an interactive process.

Real Time Operating Systems

So�
In a so� system, there is decreasing
utility to miss deadlines. It becomes
increasingly important to

Firm
In a firm system, we are trying to
minimize misses, and there is no utility
for missed tasks. Essentially there is no
point to completing a task past the
deadline

Hard
In a Hard Real Time Operating System, a
missed deadline is a total system failure.
Think brakes in your car which fail to fire at a specific time, or a failure of your battery management system in your
laptop.

RTOS Scheduling Disciplines
Just like non real-time scheduling, how exactly a real-time scheduler picks which tasks to execute in which quanta can
be an important aspect of ensuring it is doing everything correctly.

Earliest Deadline First
In each quanta, we pick the task which is due soonest. It has beenmathematically proven that if there is a possible
way to schedule all the tasks and have them complete, that this will find it.

Least Slack
Similar to Earliest Deadline First, this discipline will pick the task with the least slack (that is howmany quanta can be
spent not running this task before it becomes impossible to complete). Slack is calculated by subtracting the due date
from the duration.

Rate Monotonic
In situations where you have tasks that have repeated deadlines (i.e. you can complete this task once every 1ms, and
this one needs to be completed every 3ms). The priority of each task in a particular quanta is inversely proportional to
the duration of the cycle for that process. For example, a task which takes 1ms is higher priority than a task which
takes 3ms to complete.

Context Switching
An operating system stores all of the state of your process/thread so that it can be paused and resumed at will. All of
this information is stored in the Process Control Block or Thread Control Block, and enables the operating system to
execute multiple contexts concurrently.

Process Control Block – Contains all of the information needed to resume execution of a process at a later point. This
information includes:
➔ Stack Pointer
➔ Program Counter
➔ Register Values
➔ The status of the memory itself
➔ Anything the operating system needs to continue executing

Context Switches
These are all different ways your program can pause execution, so the CPU can handle something else, and each of
them represent something different.

System Calls
When a user programwants to interact with the kernel, it uses the standardized System Calls, usually a few hundred
different instructions to the kernel. Calling a system call will set the syscall number for the system call on a specific
register, and then release control to the kernel to handle it. Doing this usually requires a context switch.

Library Call
This is a context switch from the user program to a dynamically linked library, usually libc/libc++. These programs are
attached to the runtime, and provide a function interface. An example of a library call is malloc(). This involves a
context switch from your program to the library.

Kernel Initiated Traps
When a user program does an illegal operation (invalid memory access, division by zero, etc) the CPUʼs error handling
functionality will automatically jump execution to the kernel to handle the error gracefully (usually by quitting your
program).

Interrupt
This is the process by which hardware devices update their state to the so�ware. Possible interrupts can come from
network access, input devices, or disk/hard drives. When these devices send interrupts, execution is automatically
jumped to the kernel-defined Interrupt Service Register to handle the interrupt. Usually, you canmask (disable)
some interrupts for better performance in a critical hotpath of code. This obviously comes at the expense of the
responsiveness of the system.

Worked Example (Quiz 1)
Which of the following statements are true about interrupt-driven and polling operating systems? Select all that
apply.

Interrupt-driven OSes use ISRs to respond to hardware events
This is correct. An interrupt-driven system registers special functions (called Interrupt Service Routines or ISRs) to
handle a hardware interrupt.

Polling OSes usually consumemore energy
This is correct. Because a polling OS has to continuously check to see if it needs to respond to a hardware event, it
will waste more CPU cycles and consumemore energy

Polling OSes use ISRs to respond to hardware events
This is incorrect.

They are two terms for the same thing.
This is incorrect.

Interrupts-driven systems are more responsive
This is correct. Because a polling OS has to continuously check to see if it needs to respond to a hardware event, it
can only respond to them as fast as it is checking.

Interrupt-driven OSes usually consumemore energy
This is incorrect.

Polling is simpler to implement
This is correct. Instead of implementing ISRs, the OS can continuously check to see if a hardware event has
occurred, and respond appropriately.

Which statements accurately describe the difference and similarities between a trap and a system call? Select all
that apply.functionality

Traps are a switch from user mode to kernel mode
This is correct. A trap can occur for many different reasons, but they involve a switch between execution in kernel
space and user space.

When a process requests a privileged action from the kernel, we call that a system call.
This is correct. The POSIX standard defines a series of system calls that a process in user space can make to the
kernel. These system calls are requests to the kernel.

A system call is a type of trap.
This is correct. A system call is a type of trap, a switch from user to kernel mode

A trap is when control passes from the user process back to the kernel
This is correct. A trap refers to both the switch from user mode and the switch back to user mode

System calls are real, traps are imaginary.
This is incorrect. A system call is a type of trap

A trap could occur in response to a system call
This is correct. While this is not the only way a trap can occur, a system call will always result in a trap to handle
the request in the kernel.

A trap could occur in response to a hardware event.
This is correct. An example of this would be an illegal arithmetic operation, which would trigger a hardware event
leading to a trap.

All traps are system calls.
This is incorrect. Other types of traps include interrupts or library calls.

Memory
The systemʼs memory is a crucial resource that needs to be allocated betweenmany different programs. Initially, in
many operating systems, where multiple programs could not run at once, the programwas given complete access to
the memory (except for the parts reserved by the operating system). As operating systems developed capabilities of
running multiple programs at once, the memory needed to be divided to prevent programs from overwriting each
other and to isolate processes from each other.

The modern solution to this problem is Virtual Memory, described in detail below. But first, consider some of the more
primitive approaches to assigning memory to programs and their potential drawbacks.

The Process of Assigning Memory
The initial approach onemight consider when developing a system to share memory between different programs
running concurrently is to divide the memory into sections. For example, the Operating Systemwould obtain a block
of memory starting at 0 of a specific size, program #0 would obtain an entirely disjoint block of memory, etc…

Virtual Memory
In Virtual Memory, the Operating System lies to each program to convince them that they have the entirety of the
memory space to themselves. So each process has a virtual memory space laid out in the familiar structure. However,
when the program requests a specific value in memory, the virtual address is translated into the actual frame that is
used. Virtual Memory solves two problems: isolation, and abstraction. Each program can have an identical memory
layout, without depending on the operating system to grant them a block of addresses. Moreover, the amount of
memory granted can expand dynamically at runtime using techniques described later, without needing to reassign
entire memory sections of programs. Second, each programʼs memory is completely isolated from each other, prevent
a malicious process from interfering with one running at the same time.

Memory Management Unit
Thememory management unit is hardware on the machine
responsible for translating a specific virtual memory address
(known as a logical address), into an actual hardware address
of memory. Part of memory management unit is the
Translation Lookaside Buffer, a cache which saves commonly
accessed translations from virtual to physical memory. If a
specific address is not in the TLB, then the CPUmust obtain the
appropriate address from the page table, as appropriate.

TLB Shootdown
Each core in a CPUmaintains its own TLB. When some action
invalidates that TLB (most o�en when a core changes
processes), the TLB needs to be regenerated from the page
table. This performance degradation is themain reason why
threads typically aremore performant than processes,
when sharedmemory is an acceptable solution. Switching
processes requires the CPU to discard the TLB and obtain
addresses from the page table.

Segmentation
In segmentation, memory is divided between processes in multiple segments, which can be variable size. This is the
largest distinction between segmentation and paging. Every virtual memory address can be divided into the segment
address and the offset into that segment. The Memory Management Unit is then responsible for translating the virtual
address into an actual hardware address.

Each segment is composed of a different length, so specific address which offset outside the maximum allowed size of
the segment they refer to could lead to a segmentation fault.

Figure: In segmentation, memory is divided into a series of heterogeneous section, with each segment having specific
start and size. Newmemory is placed between existing segments.

Worked Example (Quiz 7)
I have a system that uses segmentation, uses 16-bit logical addresses and 16-bit physical addresses, and allows
each process can have up to 8 memory segments.

Index Start Segment Size
0 0x0020 0x030
1 -- --- //unused
2 0x0005 0x012
3 0x0100 0x100
4 -- --- //unused
5 0x02a0 0x01f
6 0x0300 0x100
7 0xff00 0x0ff

1) Which segment does the logical address 0x4010map to?
Because each process can have up to 8 memory segments, we need 3 bits to address them (because 23 = 8).
So the first 3 bits of the address refer to the segment, and the remaining 13 bits refer to the offset inside that
segment.

So, letʼs convert the logical address to binary to easily divide it.

0x4010 = 0100 0000 0001 0000

The bits in red refer to the segment, so this logical address maps to 010 = 2.

2) Which segment does the logical address 0xA009map to?

Similar as above, convert 0xA009 to binary, with red refering to the segment.

0xA009 = 1010 0000 0000 1001

This logical address refers to the segment 101 = 5

3) What physical addresses do the following logical addresses write do, and do they succeed?

For this type of problem, identify the segment that the logical address refers to, and offset into the physical
address by the logical amount. If the offset exceeds the size of the segment, then this write could cause a
segmentation fault.

a) 0x010A

Convert to binary, as above:

0x010A = 0000 0001 0000 1010 (Segment 0, Offset 266)

So this refers to Segment 0 (000 = 0). By referring to the provided segment table, we can determine that
physical addresses in segment 0 start at 0x0020 and the segment has a size of 0x030 (48). Any offsets into
this segment larger than the size will trigger a segmentation fault.

0x0020 + 0x010A = 0x012A

The offset is 0x10A (266), which is greater than the segment size, so this write would be a segmentation
fault.

b) 0x400A

0x400A = 0100 0000 0000 1010 (Segment 2, Offset 10)

The segment size is 0x012 so we can index into it without a segmentation fault. Therefore, the address is:

0x0005 + 0x000A = 0x000F

c) 0xA009

0xA009 = 1010 0000 0000 1001 (Segment 5, Offset 9)

The segment size is 0x012 so we can index into it without a segmentation fault. Therefore, the address is:

0x02A0 + 0x000A = 0x02AA

Segment Allocation Strategy
When you have a number of heterogenous blocks, as in segmentation, you need to determine how to place new blocks
within the existing ones. There are several approaches to this, each with their own considerations.

First – First fit scans the memory address spaces starting from the lowest address for the first starting address which
has enough space to contain a block of the requested size. This is a simple and quick way to allocate a segment.

Last – Last fit scans the memory address spaces from the highest address for the first starting address which has
enough space to contain a block of the requested size.

Best – Best fit searchers the entire segment space for the smallest gap that can properly accommodate the space. This
is slower than first fit, but can reduce segmentation. Best fit typically leaves lots of small gaps, with significant external
fragmentation.

Worst – Worst fit will place the segment into the largest gap that will accommodate it, with the idea that the two
divided sections will still be big enough to use in the future.

Random Fit – This strategy will find any random address that accommodates the segment and places it there. This can
lead to reduced segmentation.

Paging
To avoid external fragmentation, we can utilizing paging, where we assign processes fixed blocks of memory to
processes. Usually, these blocks are around 4096 bytes each, but modern operating systemsmay choose to assign
more. When the process requests memory from the operating system, the OS will allocate a specific frame to the
processʼ page table.

Important: Generally speaking, we use page to refer to the block of memory from the perspective of the requesting
process (the virtual memory), and frame to refer to physical block of memory located on RAM. This is mostly a
semantic difference, but can be an important distinction when working in the translation from virtual memory
addresses to physical addresses.

Page Table Flags
In addition to the specific frame for a given logical address, the page table also stores a bit field of flags containing
information about that specific page. Typically, a hardware interrupt will reset the dirty and reference flags on a regular
interval.

Valid
Addresses which are not used are marked with a valid bit 0. For example, in programs which do not use the entire
address space (read: almost all of them), addresses which have not yet been allocated would have the valid bit set to
0.

Resident
If the resident bit is set to 0, then that specific page does not have a frame in physical memory, usually because that
paged was swapped out to disk. Accessing a page which is not resident is a page fault.

Dirty
The dirty bit has been set by the hardware when the page has been written to in the last cycle. The dirty bit indicates
that a block of memory has beenmodified, but has not been saved to secondary storage yet.

Reference
The reference bit is set to 1 by the hardware when the page has been accessed in the last cycle. It is o�en used for
determining which pages to swap to disk.

Multi-Level Page Tables
O�en times, storing the entire page table in memory can be incredibly difficult, especially as the number of pages
increases. To solve this problem, computer scientists introduced another level of indirection: the multiple-level page
table.

In a systemwith multiple levels of paging, only the main 1st level page is stored in memory initially. Instead of maps to
specific frames, the 1st level page table maps to a 2nd level page table, which maps to frames.

For example, consider a systemwith 32-bit physical and logical addresses, and 4096-byte pages. We need 12 bits to
represent the offset inside of the page, so the remaining 20 bits are reserved for the page table.

In a single-level page table system, a page table with a 20 bit index would require up to 220 = 1,048,576 entries. If each
entry is 3 bytes (20 bit physical address, and 4 bits to indicate page flags), a single page table would be 3 MB, just for a
single process.

0000 0000 0000 0000 0000 0000 0000 0000 (first 20 bits represent page number, last 12 bits represent offset)

In a two-level page system, the 20 bits are divided into 2 sections for each page, maybe 8 bits for the first level page
table (which is always stored in memory), and 12 bits for the second level page table. The second level page table is
the table that actually contains the physical frame and page bits. See below for more information about accessing
pages in a multi-level system. Linux typically uses a three-level paging system.

Obviously, multi-level page tables require the processor to load the secondary page tables into memory before it can
determine the physical frame, which can lead to performance implications when loading addresses not in the TLB.

Worked Example (Quiz 8)
I have a system that uses two-level paging, with 12-bit logical addresses, 16-bit physical addresses, 256-byte
pages, and 4 entries in each first-level page table.

If this is my first-level page table...
Index Address
0 0x0050
1 -- //unmapped
2 0x0100
3 0x0200

...and the second-level table at address 0x0100 starts with...
Index Frame
0 0x10
1 0x30
2 0xAA
...

...and the second-level table at address 0x0200 starts with...
Index Frame
0 0xB0

1 0xCC
2 0x0D
...

1) Howmany entries does each second-level page table have?

Divide the bits of a logical address into their constituent parts. We need 8 bits to store the page offset
(because pages are 256 bytes, and 28 = 256), and 2 bits to store the first level page table (4 entries = 22), so the
remaining 2 bits can be used for the second level page table.

0000 0000 0000

So, because 2 bits are used for the second level page table, there are 4 entries in the 2nd level page table

2) What physical address does 0x60Amap to?

0x60A = 0110 0000 1010 (1st Level Page: 1, 2nd Level Page: 2, Offset: 10)

Because the 1st entry of the 1st level page is unused, this is a segmentation fault

3) What physical address does 0x817map to?

0x817 = 1000 0001 0111 (1st Level Page: 2, 2nd Level Page: 0, Offset: 7)

The first level page table maps to the page table at 0x0100, which we have a page table for. The second level
address has the frame 0x10 at entry 0, so offset that by the page offset to get

0x1000 + 0x17 = 0x1017

4) What physical address does 0xEAAmap to?

0xEAA = 1110 1010 1010 (1st Level Page: 3, 2nd Level Page: 2, Offset: 170)

The first level page table maps to the page table at address 0x0200. The entry at index 2 for that page table
is the frame 0x0D so:

0x0D00 + 0xAA = 0x0DAA

5) What physical address does 0x3D5map to?

0x3D5 = 0011 1101 0101 (1st Level Page: 0, 2nd Level Page: 3, Offset: 213)

The first level page table maps to the page table at address 0x0050. We donʼt know have the page table at
that address, so this cannot be determined

Worked Example (Quiz 9)
Two-level paging with 16-bit logical addresses, 16-bit physical addresses, 256-byte pages, and 8 entries in each
first-level page table

If this is my first-level page table (not all entries shown)
Index Address
0 0x0050
1 0x0400
2 -- //unmapped
3 0x0600

...and the second-level table at address 0x0400 starts with...
Index Frame
0 0x10
1 0x30
2 0xAA

...and the second-level table at address 0x0600 starts with...
Index Frame
0 0xB0
1 0xCC
2 0x0D

1) Howmany entries does each 2nd-level page table have?

With 8 entries in the 1st level page table, we need 3 bits. We need 8 bits to store the page offset, so the
remaining 5 bits are allocated to the 2nd level page table, giving us 32 entries (25 = 32)

0000 0000 0000 0000

2) What physical address does 0x020Amap to?

0x020A = 0000 0010 0000 1010 (1st Level Page: 0, 2nd Level Page: 2, Offset: 10)

The first level page table maps to the page table at address 0x0050. We donʼt know have the page table
at that address, so this cannot be determined.

3) What physical address does 0x4217map to?

0x4217 = 0100 0010 0001 0111 (1st Level Page: 2, 2nd Level Page: 2, Offset: 23)

The first level page table maps to the an unused 2nd level page table, so access this address would be a
segmentation fault.

4) What physical address does 0x10AAmap to?

0x10AA = 0001 0000 1010 1010 (1st Level Page: 0, 2nd Level Page: 16, Offset: 170)

The first level page table maps to the page table at address 0x0050. We donʼt know have the page table
at that address, so this cannot be determined.

5) What physical address does 0x61D5map to?

0x61D5 = 0110 0001 1101 0101 (1st Level Page: 3, 2nd Level Page: 1, Offset: 213)

The first level page table maps to the page table at address 0x0600. Indexing into that page table, we get
a frame of 0xCC, so:

0xCC00 + 0xD5 = 0xCCD5

Worked Example (Quiz 10)
I have a system that uses three-level paging, with 16-bit logical addresses, 256-byte pages, and 4 entries in each
first-level page table, and 8 entries in each 2nd-level page table.

1) Howmany entries are in each 3rd-level page table?

We need 8 bits to represent the offset into 256 byte page. The first level page table has 4 entries, so
needs 2 bits. The second level page table has 8 entries, so needs 3 bits. So the final 3 bits are dedicated
to the third level page table, meaning there can be 8 entries.

0000 0000 0000 0000

2) In the same scenario as the previous question, if what index would you use in the 3rd-level page
table for logical address, 0x46F2?

0x46F2 = 0100 0110 111 0010

In this address, the 3rd level page table has an index of 6

3) What will happen when I access a page with the following bits set.

valid = 1
resident = 0
dirty = 0
reference = 0

Because the memory is not resident in the systemʼs memory, this would be a page fault. The operating
systemwould need to obtain the block of memory from swap. This would be a context switch to kernel
mode.

Page Replacement
One of the advantages of virtual memory is the ability to create abstractions that use main memory as their
representation. One of these is Memory Mapped I/O, which is discussed later, but the primary focus of this section will
be enabling swap. Page replacement occurs when the system encounters a page fault (a process requests memory
that is not in main memory), so we need to swap one of the existing pages in main memory with the page currently in
swap. This is obviously very slow, but allows us time to fix the issue (by stopping processes and freeing memory).
When it is time to determine which pages to swap to secondary storage, we can use the reference and dirty bits to see
what pages have been accessed recently, and which ones can be swapped to storage.

Page Replacement Algorithms
To determine what pages are swapped out to secondary storage, and which are kept in main memory. Some terms
that can help us understand the language:

Resident Page – A page is resident if it is stored in main memory, not swap. This is usually indicated by the resident bit
in the page flags.

Page Fault – When a process requests a page of memory that is not in main memory.

Victim – The page that gets swapped out into secondary storage to accommodate another page. The process of
removing this page is known as eviction.

Demand Paging – A lazy-loading method of bringing pages into memory. Pages are only swapped into memory from
secondary storage if there is a page fault.

Thrashing – Repeatedly swapping memory to and from disk. A machine is thrashing when it is encountering repeated
page faults, needing to swapmemory frequently. This can absolutely cripple performance, and prevent anything from
running efficiently at all. We should design our page replacement algorithms to minimize thrashing

Local vs. Global
In Local Page Replacement, when a new page needs to be brought into main memory, the page replacement
algorithmwill only select pages that are owned by the particular process. In Global Page Replacement, the algorithm
may select any page currently in main memory. Generally speaking, global page replacement is more efficient on a
system-wide basis, but local page replacement leads to more consistent performance for processes. One program that
consumes a lot of memory will have more of an impact on other processes in a systemwith global page replacement,
as other processesʼ pages could get swapped to secondary storage to accommodate the more hungry process.

First In, First Out
In the FIFO algorithm, the operating system keeps a queue of pages as they are created. When a swap needs to be
performed, the OS will chose the oldest one to swap. Note: in local page replacement, this will be the oldest page that
is owned by the particular process.

Not Recently Used
This algorithm takes advantage of the reference and dirty bits. When a page needs to be replaced, it will group all
relevant pages into 4 categories:

4. referenced, modified
3. referenced, not modified
2. not referenced, modified
1. not referenced, not modified

The OS will first try to evict a page which has not been referenced or modified since the last interrupt cycle, continuing
up the priority list until it must evict a page which has been referenced andmodified as a final contingency. Not
Recently Used improves on FIFO by attempting to keep commonly used pages in memory longer.

Second Chance
In second chance, the systemwill maintain a queue of pages, as in FIFO. The systemwill pull the first page from the
queue, and check if the reference bit is set (indicating if it has been read since the last clock cycle). If the page has been

referenced, then it will be added to the back of the queue, otherwise it will be paged out to disk. Second chance
typically performs better than First In, First Out to prevent thrashing, as it is less likely that key pages will be swapped
to disk. This can be similarly implemented using Clock Page Replacement, which operates very similarly.

Least Recently Used
In LRU page replacement, the systemmaintains a LRU cache, a data structure that keeps track of the pages which have
been used the least in recent past. The OS selects pages from the LRU when it needs to evict a page. Performance for
the LRU is very good, but can incur significant costs to store andmaintain the data structure.

Copy-on-Write
When you fork a process, you create a duplicate of the original processʼs memory, but a lot of that memory is never
changed (for example, loaded libraries, stack variables, globals). Memory that is never modified doesnʼt strictly need
to be fully duplicated in RAM. So instead, when forking, an operating systemwill maintain the same page table
(allowing the process to read the same physical frames). When either process writes to a page, then that page gets
marked for duplication by setting the dirty bit.

Worked Example (Quiz 12)

1) A Linux process has 8 valid pages in its page table (all are resident). If it calls fork, and the child process
reads from 4 of those pages and writes to 3 of them, howmany total physical frames will the two
processes need combined (assume everything is still resident and no other memory accesses
occurred)?

Only 11 physical frames would be required. Forked processes will retain the same physical frames in
memory until they write to them, as a memory saving optimization.

Fragmentation
When you have these heterogeneous sized segments dividing your memory, you will have a number of small gaps that
are ultimately unusable.

Figure: the small gaps between segments may be too small to be usable.

Fragmentation in the context of memory segmentation is usually considered to be external fragmentation. Paged
memory cannot be fragmented externally, but the large size of blocks that need to be allocated in the pagedmemory
systems can lead to internal fragmentation.

Note that internal and external fragmentation are kind of nebulous, and depend on your perspective. For example,
consider a systemwith pagedmemory with blocks of 4096. Now further consider writing an allocator for this system
that works in a segment style (explicit free list). The gaps in the this allocator are external to the individual blocks of
memory returned by the allocator, but internal to the Operating System, as there is no gap for the pages to fill.

Allocators
The operating system has means of us being able to obtain virtual memory (see and example of mmap below), but
usually it only works with larger blocks of memory (of say 4096 bytes). Most allocations do not need this much
memory, so requesting a page frommemory to store a small array can lead to significant internal fragmentation. To
solve this problemwe create an allocator, a library that can request this memory for us, and then divide it into
multiple allocations to reuse.

int main() {
void *page = (void *)mmap(NULL, PAGE_SIZE, PROT_READ | PROT_WRITE,

MAP_PRIVATE, ZERO_FD, 0);
printf("%p", page);

}

Figure: request a page of memory from the operating system, using mmap.

The allocator will use the mmap, brk, and sbrk system calls to obtain and release memory to the operating system.
brk() allows you to move the program break (the line between the process code and the heap, to allow you to write to
those pages).

There are several different ways of programming allocators, described below. Much of the logic here follows from the
discussion on segmentation vs. paging, as we are essentially performing the same function here, albeit on a smaller
scale.

Implicit Free List
In an implicit list, the allocation affixes a prefix to the specific allocation with somemetadata, including a size of the
allocation, and whether the block has been freed or not. Note that blocks of different sizes are held in the same
contiguous space. The process of looking for a free block involves iterating through the memory to find a block of
memory that is large enough to accommodate the requested space and has beenmarked as freed.

Explicit Free List
In an explicit free list, each allocation has a prefix that points to the next free block. Then, every page begins with a
small header containing a pointer to the first free block. When a block is freed, it can be added to the free list, and then
the process of finding a block is iterating through the free list to find a block large enough for our needs.

Segregated Free List
A segregated free list works very similarly to an explicit free list, except that each page has only a single size of
allocation (usually a power of 2). This was the method we used for Project 3.

Memory Mapped I/O
In memory mapped I/O, the operating system defines specific addresses in memory as ways to access certain I/O
devices. For example, you can use memory mapped I/O to map a file (a portion of the disk) into “systemmemory” and
be able to access that file like you would any other virtual memory. This can allow us to do file manipulations faster
than we would by doing read() and write(), because we do not need to switch into kernel mode to execute those
operations.

For example, take a look at this example of mapping a file into memory using mmap:

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main() {
FILE *handle = fopen("file.txt", "rw");
struct stat filestat;

if (fstat(handle, &filestat) != 0) {
perror("stat failed");
exit(1);

}

char *data;

data = (char *)mmap(NULL, filestat.st_size, PROT_READ, MAP_SHARED, handle, 0);
if (data == MAP_FAILED) {
perror("mmap failed");
exit(2);

}
}

Disks

Anatomy of a Disk
A hard disk is composed of a stack of platters (divided into a series of
cylinders), which is read by a read head. Because you physically need
to move a read head and rotate the platter to read data, sequential
accesses are muchmore efficient than random access.

Boot Sectors
The boot sector is the first sector in a File System, and usually contains information about the disk as a whole, as well
as basic code that can be used to start the OS. The exact nature and details of the boot sector is beyond the scope of
this course. The exact size of the boot sector is dependent on the file system the disk is formatted.

Scheduling Methods

FCFS - First Come First Serve
In this scheduling method, disk read/write requests are fulfilled in the order they come in, no matter the track. This
method prevents any request from going unfulfilled and starved.

SSTF - Shortest Seek Time First
In this scheduling method, disk requests are prioritized based on the requestsʼ seek time. Because of this, long
requests could get delayed continuously, causing a process to continuously wait.

SCAN
In this scheduling method, requests are fulfilled as the read head iterates sequentially from one end of the disk to the
other. When it hits the end, the read head changes direction andmoves towards the other end, continuing to scan and
fulfill requests when it reaches a requested track.

C-SCAN (Circular Scan)
This method is very similar to SCAN, with the only exception being that the head only fulfills requests scanning one
way. When it hits the end of the disk, the read head will jump back to the other side and scan the length of the disk
again. This method has better andmore uniform response times across the disk

LOOK
In this scheduling method, requests are fulfilled by
numerical order as the headmoves along the track to the
request with the largest track, then switching directs and
doing the same as it moves to the last request and fulfills
all requests for tracks in between.

C-LOOK (Circular Look)
This method is very similar to LOOK, with the difference
being that the head only fulfills requests when it moves in a
specific direction. Once it hits the last request in the
direction itʼs going, it will jump to the first request on the
opposite end and continue going the same direction as
before, fulfilling all requests in between.

Worked Example (Quiz 12)

1) A magnetic hard disk drive has 100 total
cylinders (numbered 0 to 99) and 5 current requests for the following cylinders in the following order
(22, 7, 1, 15, 6). If the disk head starts at cylinder 17, how far (in cylinders) will my disk have to seek
to handle these requests, if I'm using LOOK? (Compute total seek distance. If the algorithm needs an
initial direction, start moving toward cylinder 99.)

Hint: if I start at cylinder 4 and seek to cylinder 7, the head has moved 3 cylinders.

In LOOK, the disk headmoves from one direction to the end, and then retreats back to the beginning,
reading cylinders in both directions. So, in this situation we would visit the cylinders in the following
order:

17, 22, 15, 7, 6, 1

Therefore, the head will travel (22 - 17) + (22 - 15) + (15 - 7) + (7 - 6) + (6 - 1) = 26 cylinders

2) What would the answer to the previous question be if I used SSTF, instead?

In SSTF, the headmoves to the cylinder in the queue that it would currently be the least travel time to
get to, so the head visits the cylinders in the following order:

17, 15, 22, 7, 6, 1

Therefore, the head will travel (17 - 15) + (22 - 15) + (22 - 7) + (7 - 6) + (6 - 1) = 30 cylinders

File Systems

Historical Context
To understand how and whymost file systems were designed, we need to consider the technological environment in
which many of these file systems developed. Most devices today use Solid State Drives, which have mostly equivalent
sequential reads and random reads. However, for most of computing history, hard drives with significantly different
performance characteristics existed. To understand this further, consider the composition of a hard drive.

FAT File Systems

One of the earliest file systems to develop was FAT, or the File Allocation Table. In FAT, the disk is divided into a number
of sectors, same sized blocks that the file system is divided into. For example, FAT12 typically uses 512 byte sectors.
The structure of a FAT12 file system is shown below:

Boot Sector
The boot sector is the first sector in a File System, and usually contains information about the disk as a whole, as well
as basic code that can be used to start the BIOS. The exact nature and details of the boot sector is beyond the scope of
this course.

File Allocation Table
The File Allocation Table provides a mapping of how sectors are assigned in the data section of the disk. The number
in the FATXX is the number of bits of each entry in the FAT table. For example, FAT12 is composed of 12 bit entries,
FAT16 is composed of 16 bit entries, etc.

Decoding FAT12 File Allocation Tables
FAT12 is composed of 12 bits, which does not fit neatly into an integer number of bits, so instead three bytes come
together to describe 2 successive entries. The structure of the two entries in the 3 bits is shown below

F0 FF FF ⟶ FF0 FFF

For more information on decoding the FAT, see the Project 4 description.

Each entry in the FAT table corresponds to a logical cluster in the data section. The first 2 entries begin with the end of
file marker and the media descriptor, so entries beginning with 2 refer.

Root Directory
In FAT12 and FAT16, the root directory is a specific section of the disk. In these systems, a directory listing for the root
directory is located here. Entries are 32 bytes, and have the following format (shown below is the format for FAT12
entries)

Data Sectors
The remaining sectors in the disk are dedicated to data sectors, i.e. the contents of the files. What file each sector is
allocated to is described in the FAT.

Unix FS
The Unix FS is the basis for most modern file systems.

Boot Block
The first sector of the file system, similar to FAT. The Boot Block contains information needed to start running the
operating system.

Superblock
Contains metadata about the file system as a whole, including the state, the block size (originally 512 byte blocks, now
typically 4096 bytes), a pointer to a list of free blocks, and the INode of the root directory.

INodes
A large array of INode entries, each of which has an index,
and represents a specific file or directory in the file system.
The INode contains the metadata about the file including:
the type, whether its a named pipe, whether it if it is a
symlink, the file size, permissions, flags, access and
modification times, and the number of links that have
been created (used for hard links).

Importantly, the INode also contains pointers to data
blocks, which contain the contents of the file. Typically,
there are 12 direct pointers to blocks in the data section.

These direct pointers allow us to store upto 48Kb.

Indirect Blocks
If a file needs more than 12 blocks, there are additional
indirect pointers attached to the inode. These indirect
pointers can point to blocks of memory which are entirely
dedicated to storing more pointers to blocks. For a single
level of indirect blocks, this gives us an additional 1024
pointers, allowing us to store files up to 4 MB. Double
indirect blocks would allow us to store files up to 4 GB, and
triple indirect (typically the maximum) allw us to store files
of up to 4 TB, which is a practical maximum for most
situations.

Berkeley Fast File System
The Berkley Fast File System builds upon the Unix FS with some additional performance optimizations.

Cylinder Groups
The Berkeley Fast File System partitions the disk into a number of cylinder groups, each of which has a copy of the
superblock, somemetadata about the cylinder group, a number of INodes, and a data section. The intention is to keep
the Inodes and data of a particular part of the file system to reduce the seeks needed to read a file. Part of the
optimizations around cylinder groups was putting files into groups to keep them together, and to spread the number
of writes more evenly across the disk.

Fragments
BFFS also introduced a concept called fragments, where you could intentionally divide blocks into smaller sections on
the disk, to save space as the expense of speed. This never really took off within the community.

Bigger Block Sizes
BFFS also recommendedmoving to larger block sizes, closer to 8Kb. This has happened in somemodern variants, but
many operating systems find 4 Kb to be a happymedium.

Log Structured File Systems
A log structured file system is predicated on the idea that writes should be optimized, as slower reads can be
compensated by keeping large portions of the disk in memory. As such, a log structured file systemwill try to make
writes as sequential as possible, rewriting its internal datastructure to allow this. All files andmetadata are written to a
circular buffer. The boot block and superblock behave very similarly to BFFS.

Log
The log contains all file data, INodes, and INode Map Sections (portions of a map that maps INodes to their location in
the log). Whenever a file is updated, a new entry is written to the back of the log, the INode is updated, and the INode
Map section is updated to reflect the new INode location.

Checkpoint Region
The checkpoint region contains a series of pointers that allow us to access the various sections of the INode Map
quickly.

Worked Example (Quiz 13)

1) Which of the following would be valid (sensible) first entries for a FAT12 disk's FAT? Note, these are
entries, not individual bytes. (Theyʼre already decoded.)

0xff0 0xfff 0x003 0x004 0x005 0xfff 0x001 …
This is incorrect, the value 0x001 should never occur in a FAT table.

0xff0 0xfff 0xfff 0xfff 0xfff 0x000 0xfff ...
This is a sensible beginning to a FAT12 FAT table.

0xff0 0xfff 0x004 0x002 0x003 0x000 0x000 ...
This is not a sensible FAT table, as the first 3 entries create an infinite loop. The entry at index 2 points to
index 4, the entry at index 4 points to index 3, and the entry at index 3 points to index 2.

0xff0 0xfff 0x004 0x004 0x000 0x000 0x000 ...
This is not a sensible fat table, as multiple entries point to 0x004.

0xff0 0xfff 0x003 0x004 0x005 0xfff 0xfff ...
This is a sensible beginning to a FAT12 FAT table.

0xff0 0xfff 0xfff 0x005 0x003 0xfff 0x000 ...
This is a sensible beginning to a FAT12 FAT table.

2) Which of the following are innovations introduced by the Berkeley Fast File System tomake the file
system faster? Select all that apply.

INodes
This was introduced as a concept in the original Linux file system.

Triple Indirect Blocks
This was introduced in the Berkley Fast File System, but as a way to increase the maximum size of files that
can be stored, not as a performance optimization.

Directory Entries
Directory entries were introduced in earlier file systems.

Double Indirect Blocks
These were a feature of the earlier UNIX FS system.

Direct blocks
These were a feature of the earlier UNIX FS system.

Larger block sizes
This is correct. The Berkley Fast File system raised the block size from 512 bytes to 4096 bytes. This was
possible due to increased RAM available at the time, and enabled fewer seeks at faster accesses at the
expense of more memory/space waste. BFFS also introduce the concept of block fragments to try and
address the space waste issue, but they remained largely unused.

Data block fragments
BFFS also introduce the concept of block fragments to try and address the space waste issue, but they
remained largely unused.

Indirect blocks
These were a feature of the earlier UNIX FS system.

File/Directory Placement Heuristics
This is correct. The BFFS introduced heuristics to place directories and their contents close on the disk, so
as to reduce the seek time when traversing the file system.

Cylinder Groups
This is correct. The BFFS introduced Cylinder Groups, which divided the disk into a series of smaller disks.
The intention of cylinder groups is to keep commonly accessed files together, so as to reduce seek time,
another innovation that provided initial speedups but became less relevant as disks got larger and solid
state drives were introduced.

Super Blocks
This is incorrect, the superblock was introduced in earlier UNIX FS system.

Metadata
This is incorrect, metadata (stored in the INodes), was introduced in earlier systems.

3) Say I have a Unix File System, with 4kB-sized blocks, and only direct and single indirect blocks (no
double or triple indirect blocks). Assuming that each inode has 12 direct pointers and two indirect
pointers and that pointers are 4 bytes, what is the largest size a file can be on this file system?

The 12 direct pointers can each point to a block of 4096 bytes, so 49 152 bytes

A single indirect pointer can point to an indirect block with 1024 pointers (4096 / 4), each of which can
point to a block of 4096 bytes, so a single indirect block can add an additional 4 194 304 bytes.

Because there are two indirect pointers, the maximum size of a file is 49,152 + (2 * 4,194,304) =
8,437,760 bytes (or about 8.44 MB)

Disk Fragmentation
As we have seen from each of the file systems, as time goes on, the placement of the contents of a file can vary widely
across the disk. In moving hard drives, these nonsequential reads can kill performance. When the contents of
files/directories are strewn wildly across the disk, the disk has fragmentation. An overly fragmented disk can lead to
very slow read and write times due to needing to seek the head. To solve this program, you can run a defrag program,
which rearranges the contents of your disk to bemore continuous, leading to more sequential reads, and lower seek
time.

The Berkely Fast File Systemʼs concept of cylinder groups would help to partition the disk, keeping files together more,
which can reduce disk fragmentation. Modern file systems have other means of partitioning the disk to minimize
fragmentation, but it is less important now due to the rise of solid state drives.

RAID
Being able to recover from data loss is very important to both consumers and businesses. Using a Redundant Array of
Independent Disks (RAID; the I used to stand for Inexpensive) allows an unobtrusive way to prevent data loss, reduce
recovery time, and even increase read and write speeds.

Striping
Striping is the process of sequentially spreading information being written across multiple disks. This can be done
either per bit, byte, or block. Striping may increase both read and write speeds because the disks are able to write and
read data independently of each other.

Mirroring
Mirroring is the process of writing multiple copies of the data being sent to the disk across multiple disks. The disks
essentially become a carbon copy of each other. Mirroring allows

Parity
Parity is extra data that is calculated and stored alongside the userʼs data. This data can be used to recover information
if a drive fails, as well as to verify the integrity of the stored data.

Parity can either be even or odd and is calculated based on if there needs
to be a 1 added to make the number of 1 bits even or odd.

RAID Levels

RAID 0
RAID 0 is made up of n disks that are striped, but not mirrored or stored with a parity bit.
This allows up to a theoretical n times read and write speed increase with n disks, but no
redundancy. For this reason, RAID 0 is not quite RAID.

RAID 1
RAID 1 is made up of n disks that are mirrored, but not striped or stored with a parity bit.
This allows theoretically up to n times read speed increase since the disks can read back
information independently of each other, but no increase in write speed. Even though
there is no parity bit, mirroring allows for a drive to fail, as long as there is at least one
other drive in the system since each drive contains the same data.

RAID 2
RAID 2 uses bit-level striping to spread the data across multiple drives andmirroring data using multiple drives for
backup. This RAID level is not used in practice.

RAID 3
This RAID level uses byte-level striping and odd or even parity to recover data incase of drive failure with a dedicated
parity drive. The spindles are synchronized since blocks are spread across multiple disks and can bring a speed
increase for sequential reads and writes.

RAID 4
This RAID level uses block-level striping and a dedicated parity disk. This level has good performance for random
reads.

RAID 5
This RAID level is similar to RAID 4, but instead of a dedicated parity
disk, it uses distributed parity. This RAID level is one of the most
commonly used levels. Distributing the parity among all the disks
helps distribute the wear, since usually a dedicated parity disk
would be the first to fail due to the constant writing and reading
from it.

RAID 6
This RAID level is like RAID 5 but with double distributed parity, and it uses Reed Soloman codes that allow 2 disks to
be lost. This RAID level is one of the most commonly used levels.

Note: This does not protect against correlated failures of multiple drives instantaneously

