
Exam 1 Study Guide
CPSC 3520 - Brendan McGuire

Disclaimer: while I attempted to be as accurate as possible, I am a student just like you. If you see anything
wrong or unclear here, please let me know and I will be sure to correct it!

Good luck today!

General Computing Topics

Types of Programming Languages

Dynamic Programming

Grammars And Languages

Alphabet

Notation & Terminology

Grammar

Modes To Use Grammars

Chomsky Grammar Hierarchy

Modeling Grammars

Finite State Machines - Regular Languages

Regular Expressions

Push-Down Automata - Context-Free Languages

Parsing Grammars

Syntactic Analysis/Generation (flex)

Semantic Analysis/Generation (bison)

Parse Tree

Top-Down & Bottom-Up

Cocke-Younger-Kasami Parsing Algorithm

Extended Example

General Computing Topics
Moore’s Law – The idea that computer transistor density doubles roughly every 18 months. This is a
descriptive (rather than prescriptive) law; an observation about the rate of progress. In recent years, this has
not held to be as constantly true

Babbage’s Difference Engine – An early mechanical computer invented by Charles Babbage, designed in the
1820s.

ENIAC – Electronic Numerical Integrator and Computer, the first programmable general-purpose digital
computer made in 1945 by IBM. It was used at large institutions, like finance, military, and government.

Types of Programming Languages
Programming languages come in my flavors, but many of them subscribe to one or more of the following
ideologies for programming languages, different ways to write programs.

Imperative language You tell the computer what to do directly:
create this variable, assign it, add it to this
other variable.

C, JavaScript, FORTRAN

Declarative language You describe what the program should do
(the problem domain), but do not describe
how

Prolog

Functional language These languages are oriented around
applying and composing functions in a
declarative way.

ML, CAML, Lisp

Rule-Based Language Expresses facts and rules in formal logic to
represent the problem domain

OPS5, clips, and soar

Event-Driven Language The control flow of the program is
determined by external events such as user
interaction, network activity, or sensor
readings.

nginx, Nodejs
“Virtually all object-oriented
languages are event-driven”

Parallel Language Concerned with coordinating multiple
threads and programs simultaneously,
handling shared memory, messaging, and
the inherent complexities of multi-threaded
programming.

MPI/OpenMP

Dynamic Programming
A means of problem solving by breaking a large problem into smaller subproblems, where the large
problem’s solution is dependent on the solution of the smaller problem. Dynamic programming is mainly used
as an optimization in cases where you might use recursion.

Grammars And Languages
At the heart of any sort of communication is language, a way of representing meaning between participants.
We are particularly interested in this class about the mechanics of human-computer languages, which are
designed to be understood by both humans and computers, as these have more strict and formalized rules.

Language – A system of symbols to mediate communication between entities, in particular humans and
computers.

Grammar – The formal specification that defines the rules for a language

Alphabet
For a specific language, the alphabet is the list of symbols that compose all of the other tokens, all of the
symbols that may appear in a program. For a lot of languages, this is the ASCII character set, but this is not
necessarily the case.

alphabet – A set of symbols, usually denoted with V.

Notation & Terminology
A string over V is a sequence of symbols formed by concatenating zero or more symbols of V. The length of a
string s is denoted |s|, and is the number of symbols in the string.

V+ is the set of nonempty strings over the alphabet V. This means all of the strings of length 1 (V), length 2
(V1), etc… unioned together. It is also known as the positive closure of V

V+ = V ∪ V2 ∪ V3 ∪ ... (Read: The set V+ is defined as all strings of length 1 unioned with
all the strings of length 2, etc...)

V* is the same as the V+ except it also includes the empty string ϵ. It is known as the closure of V.

Grammar
A grammar is composed of a number of elements used to distinguish it. The mathematical way of writing a
grammar with all of its components is shown below

G = (VT, VN, P, S)

1. VT – An alphabet of terminals. Terminals represent all of the elemental building blocks of the
grammar and corresponding language. A C compiler might have an int terminal.

2. VN – An alphabet of non-terminals. Non-terminals are intermediate symbols used in the generation
(or analysis) of a program, but what wouldn’t appear in the final representation. Similarly, a C compiler
might have a VariableDeclaration non-terminal, which would include all of the symbols in the source
code representing that variable declaration.

3. P – A list of production rules which define how we can rewrite symbols and define the structure of a
grammar. Important: the production rules govern which strings can be formed in this grammar.

4. S – A start symbol that is representative of the entire program. The start symbol MUST be a
non-terminal.

Production Rules
Because production rules define the structure of a grammar, it is worth understanding how they are written,
and how they work. We use Backus–Naur Form (BNF) to notate production rules.

<decl> ::= e | <type> <variable-list>
<variable-list> ::= <variable> | <variable>, <variable-list>
<variable> ::= <identifier>
<command> ::= <variable> = <expr>

An example of production rules represented using Backus-Naur Form. The general structure lists an item on
the left and an equivalence on the right.

If you are working with a restricted type of language (Context-Free Language – see below) then it is possible
to put your production rules in Chomsky Normal Form (CNF), which makes it possible to apply common
parsing algorithms (such as Cocke-Younger-Kasami). All rules in CNF must be of the following two forms.

A→ BC
Rewrite two non-terminals in sequence as a single

non-terminal

A→ a
Rewrite a terminal as a single non-terminal

Modes To Use Grammars
There are two main ways to use grammars, shown below with an explanation. The use of grammar is
dependent on your application.

Generative – Using the rules of the language, the
grammar to generate new programs (valid syntax in
the language)

Analytic – Using the rules of the language to
understand a given string, validate it against the
grammar, and process it.

Chomsky Grammar Hierarchy
Not all grammars are made equal. We divide grammars into groups based on their inherent complexity. Not
surprisingly, the more complex a grammar is, the harder it is to compute efficiently, so the most simple,
restricted grammars are the easiest to work with.

T0 Turing Computable The most complex grammars live here. T0 grammars are defined as those
which can be parsed at all using a Turing Machine. This covers basically all
known grammars you can comprehend.

T1 Context-Sensitive
CSG

These grammars are allowed to have non-terminals on the left side of their
production rules. For example,

aAb → aBb (where a and b are non-terminals)

This is a more powerful way to represent grammars, but parsing these
grammars in an efficient way is still an open problem in computer science.

T2 Context-Free
CFG

This is a more restricted set of grammars, ones whose production rules can be
put into Chomsky Normal Form (CNF). Context-Free (and Regular) languages
can be parsed using the CYK algorithm.

A→ BC

A→ a

Context-Free Languages can be modeled using Push-Down Automata. Most
programming and markup languages you know and love are found here.

T3 Regular The most restricted (and thus easiest to parse) grammars are regular. This
means they can be modelled using Finite State Machines (and regular
expressions!)

An important note about regular languages is that they cannot have any nested
state. Examples of this kind of nested state is tags in HTML (you can have as
many nested tags as you want), declarations in C/C++ (you can nest as many
statement blocks as you want in C). Any language with this kind of nesting is
impossible to parse with a regular grammar

Modeling Grammars

Finite State Machines - Regular Languages
Regular languages are so restricted, they can be
represented using finite state machines, an abstract
machine that can be in any one state at a time. It
starts at one state, and each character in the string
allows it to transition to a different state.

Regular Expressions
One way of compactly writing a Finite State Machine
is using regular expressions, which is a compact way
to represent regular grammars. These regular
expressions can be used to parse regular grammars.
A regular expression consists of the follow
elements:

1) Atoms (essentially terminals) – matches a
single symbol in the alphabet

2) Concatenation (two adjacent elements
means that these elements must be present
next to each other in the sequence)

3) Alternation (either this or that must appear) –
represented using a vertical bar |

4) Kleene Star (zero or more copies of this must
appear here) – represented using a star *

5) Parenthesis (used to group elements
together to apply these in tandem)

(a|b)*(b|c)*

Group 1: matches a or b
Group 2: matches b or c

Groups may be repeated zero or more times

Push-Down Automata - Context-Free Languages
Context-Free Languages are not so simple as to be
computable using a Finite State Machine, as there is
additional complexity that needs modeling. A
pushdown automaton is essentially a finite state
machine with a stack, that allows you to have
multiple states on the stack at once. This allows you
to represent the more complex context-free
languages

Parsing Grammars
What good are these grammar specifications if we can’t do anything with them! Before parsing a grammar,
however, it is important to think about what exact analysis/generation you are planning on doing. This may
help you pick one of the following processing steps for grammars

Syntactic Analysis/Generation (flex)
This step is involved in understanding and parsing the physical form (syntax) of the language. Syntax analysis
is not concerned with the meaning of the grammar, that analysis is reserved for semantic analysis later on.
The end result of syntactic analysis is a Parse Tree (aka Derivation Tree). Alternatively, when generating, a
parse tree is converted into syntax.

Lexing (Scanning) – The first step when parsing grammars. Lexing converts individual symbols (like i, n, t)
into tokens that can be more easily acted upon (like int). This allows you to specify your grammar rules at a
higher level of abstraction, and let the lexical analyzer take care of whitespace differences, commas,
semicolons, and the like that don’t really define the structure of your language. Tokens produced by the
scanner are usually one of a few types: identifiers (like the name for a variable or function), reserved word
(a special word in the language that has a specific meaning, like int or auto or class), or other simple
symbols like brackets.

Syntax Parsing – Forming the series of tokens created by the scanner into a parse tree.

Semantic Analysis/Generation (bison)
This is the process of understanding the actual meaning of the program, using the parse tree from an earlier
step. In a traditional programming language, this is where checks such as the type system would be enforced.

Parse Tree
Also known as a Derivation Tree, the Parse Tree represents a program as a tree of all of the elements in the
program, for which it is easier to do semantic analysis. This is because similar syntax is grouped together. The
rules that govern the parse tree are shown below:

1) The root of the parse tree is the start symbol S in VN

2) The leaf (bottom) nodes are terminal symbols in VT

3) Interior Nodes are non-terminals in VN

4) The children of any non-leaf node represent the right-hand side (RHS) of some production rule in P,
where the parent represents the left-hand side of that production rule (LHS)

Consider the parse tree for the English sentence “This is a dog.” At the root,
we see the start symbol, which here represents the entire sentence. All of the
nodes in blue represent non-terminals, while the leaf nodes in green are the
terminals. Some production rules that might produce this parse tree from the
sentence are shown below, in Chomsky Normal Form

S→ AB
B→ VN
A→ this | a | the
V→ is
N→ dog | cat

Top-Down & Bottom-Up
There are two different ways to fill in the parse tree from the list of tokens produced by the scanner. The
parse type you choose is dependent on the needs of your parser.

Top-Down Parse – Filling the parse tree from the top-down (starting at the root node and working down).

Bottom-Up Parse – Starting from the bottom leaf nodes, and gradually working our way up.

Cocke-Younger-Kasami Parsing Algorithm
The CYK Algorithm allows us to parse a Context Free Grammar, expressed in Chomsky Normal Form in O(n3)
proportional to the number of characters in the string. Remember that to be in Chomsky Normal Form, a CFG
must have all of its production rules in one of the two following forms

A→ BC
Rewrite two non-terminals in sequence as a single

non-terminal

A→ a
Rewrite a terminal as a single non-terminal

Extended Example
Consider the grammar defined by the following production rules. Is the string dldr in L(G), that is does it
follow the rules of the grammar G? Follow along to find out!

S→ RS | DA | r
A→ LA | DS | l
L → l
R→ r
D→ d

The production rules, expressed in Chomsky
Normal Form, will allow us to parse the string dldr.

D L, A D R, S

d l d r

In the first step, we fill in the bottom row of the CYK
table. The bottom row represents all of the
non-terminals that could be substituted for a single
terminal at the bottom.

d (D)
l (L, A)
d (D)
r (R, S)

S - A

D L, A D R, S

d l d r

Next, we fill in the second row of the table. These
three columns represent all of the length 2 strings,
and what they can be parsed to. All of the
combinations possible for that row are shown, with
their substitutions in parenthesis

DL, DA (S)
LD, AD
DR, DS (A)

- A

S - A

D L, A D R, S

d l d r

Now, consider the third row of the table. These two
boxes represent all of the length 3 substrings, and
what they can be parsed as. As above, all
combinations are shown, with their corresponding
substitutions in parenthesis

SL, SA
LA (A), AA

S

- A

S - A

D L, A D R, S

d l d r

Finally, consider the top left box. This is all of the
possible parsings for the entire string!

SA, DA (S)

Because the start symbol S is a possible parse in the top left box, the string matches the grammar! dldr is in
the grammar defined by the production rules shown above!

